Remedial Investigation and Final Report for the 136 Naphtha Release Area (Girard Point)

Former Philadelphia Energy Solutions Refinery Facility ID No. 51-33624 3114 West Passyunk Avenue, Philadelphia, Pennsylvania

Prepared for

Bellwether District Holdings, LLC 3144 West Passyunk Avenue Philadelphia, Pennsylvania

Prepared by

Terraphase Engineering Inc. 100 Canal Pointe Boulevard, Suite 110 Princeton, New Jersey 08540

April 2025

Project Number P044.001.006

File: 20250417-Terraphase-BDH-136NaphthaRelease-RI-FR

Contents

Acr	onym	s and Abbreviations
Cer	tificat	ionvii
Exe	cutive	Summaryviii
1	Intro	duction1
2	Back	ground
	2.1	February 2019 Release and Immediate Response Actions
	2.2	Remedial Investigation
	2.3	Excavation and Discovery of Pre-Existing Sources4
	2.4	Post-Excavation Soil Sampling
	2.5	Extent of Pre-Existing Sources of Contamination
	2.6	Langan's (2021) Combined RI/FR Submission6
3	Attair	nment Sampling
	3.1	May 2024 Sampling
	3.2	October 2024 Sampling
	3.3	Review of Attainment Sampling Results10
4	Conce	eptual Site Model
	4.1	Site Setting
	4.2	Topography11
	4.3	Regional Geology and Hydrogeology12
	4.4	Local Geology and Hydrogeology12
	4.5	Land and Groundwater Use
5	Selec	tion of Standards14
6	Demo	onstration of Attainment
	6.1	Attainment of SHS
	6.2	Ecological Screening Evaluation
	6.3	Analytical Limits Evaluation
7	Post-	Remediation Care Plan16
8	Sumn	nary and Conclusions16
9	Refer	ences

Tables

- 1 Summary of Soil Attainment Analytical Results
- 2 Summary of Additional Soil Characterization Analytical Results

Figures

- 1 Site Location Map
- 2 Location of Line Breaks in the Area of Former Unit 136
- 3 Soil Sampling Locations March 2019 Remedial Investigation
- 4a General Distribution of Benzene in Soil (AOI 7)
- 4b General Distribution of Toluene in Soil (AOI 7)
- 5 2019 Excavation and Discovery of Pre-Existing Sources of Contamination
- 6 Soil Sampling Locations December 2019 Post-Excavation
- 7 Extent of Pre-Existing Sources of Contamination
- 8 Soil Attainment Sampling Analytical Results
- 9 Additional Soil Characterization Soil Sampling Locations
- 10 Soil Analytical Results

Appendices

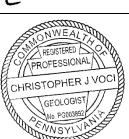
- A Notification Documentation
- B Historical Soil Analytical Results
- C Systematic Random Sampling Grid
- D Laboratory Reports
- E Data Quality Assurance and Control Checks
- F Soil Boring Logs
- G 75%/10x Rule Calculations
- H Response to Comments

Acronyms and Abbreviations

25 Pa. Code	Title 25 Pennsylvania Code
Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act
AOI	Area of Interest
ASTM	American Society for Testing and Material
BDH	Bellwether District Holdings, LLC
bgs	below ground surface
COPC	constituent of potential concern
DC	direct contact
Evergreen	Evergreen Resources Group, LLC; includes Sunoco, Inc. n/k/a ETC Sunoco Holdings LLC, Sunoco, Inc. (R&M) n/k/a Sunoco (R&M), LLC n/k/a Energy Transfer (R&M), LLC and Evergreen collectively referred to as "Evergreen"
the Facility	former Philadelphia Energy Solutions refinery facility
ft	foot or feet
Langan	Langan Engineering and Environmental Services, Inc.
LNAPL	light non-aqueous phase liquid
mg/kg	milligrams per kilogram
MSC	Media Specific Concentration
NIR	Notification of Intent to Remediate
Non-Res	non-residential
PADEP	Pennsylvania Department of Environmental Protection
PESRM	Philadelphia Energy Solutions Refining & Marketing LLC
PID	photoionization detector
PAH	polycyclic aromatic hydrocarbon
RI	remedial investigation
RIR	Remedial Investigation Report
RI/Final Report	Remedial Investigation and Final Report – 136 Naphtha Release Area
RL	reporting limit
SHS	Statewide Health Standard
the Site	136 Naphtha Release Area located within the former Philadelphia Energy Solutions Refinery facility
SGW	soil-to-groundwater
SVOC	semivolatile organic compounds
Terraphase	Terraphase Engineering Inc.
TDS	total dissolved solids
VISL	vapor intrusion screening level
VOC	volatile organic compounds

USEPA United States Environmental Protection Agency

Certification


Pursuant to the requirements of the Pennsylvania Land Recycling and Environmental Remediation Standards Act (Act 2), adopted May 19, 1995, which states:

Interpretation of geologic and hydrogeologic data shall be prepared by a professional geologist licensed in this Commonwealth.

I hereby attest that, as a Professional Geologist licensed in the Commonwealth of Pennsylvania, I am familiar with, and have reviewed and/or prepared the interpretation of the geology and hydrogeology presented in the attached report entitled, *Remedial Investigation and Final Report for the 136 Naphtha Release Area (Girard Point), Former Philadelphia Energy Solutions Refinery, 3144 West Passyunk Avenue, Philadelphia, Pennsylvania*, dated April 17, 2025.

Based on the available data represented in the report, I believe that the geologic and hydrogeologic interpretations made herein are reasonable and accurate.

Christopher Voci, PG Senior Principal Geologist

April 17, 2025 Date

Executive Summary

Terraphase Engineering Inc. (Terraphase) has prepared this *Remedial Investigation and Final Report for the 136 Naphtha Release Area (Girard Point)* (RI/Final Report), on behalf of Bellwether District Holdings, LLC (BDH) (formerly Philadelphia Energy Solutions Refining & Marketing LLC [PESRM]), to detail the results of investigation and remediation activities completed in an area where a release of light naphtha product, from aboveground piping, occurred on February 22, 2019 (the Site). The Site is located within the Former Philadelphia Energy Solutions refinery (the Facility), an approximately 1,300-acre property situated in a highly developed area of Philadelphia. The refinery ceased operations in 2019 and has since been undergoing remediation and redevelopment. The release that is the subject of this report occurred prior to Hilco Redevelopment Partners' acquisition of PESRM in June 2020; Hilco Redevelopment Partners completed prior to its acquisition and to obtain additional data to support demonstration of attainment of the Statewide Health Standard (SHS) under Pennsylvania's *Land Recycling and Environmental Remediation Standard Act* (Act 2).

The aboveground pipeline which caused the release was associated with Refinery Unit 137, which has since been demolished as part of BDH's redevelopment of the Facility. This Unit separated raw crude oil into its desired components, including light naphtha. A Notification of Intent to Remediate (NIR) for this specific release was submitted to the Pennsylvania Department of Environmental Protection (PADEP) after HRP Group's acquisition of PESRM on June 2, 2021 (eFacts PF No. 850105) by Langan Engineering and Environmental Services, Inc. (Langan). When the release occurred in February 2019, PESRM conducted immediate interim response actions, which included the removal of liquids from the storm sewer and culvert via vacuum truck, investigation and sampling activities, excavation of soil visually impacted by the release, and post-excavation soil sampling. What complicated efforts to investigate and remediate impacts associated with this release were the identification of additional pre-existing sources of contamination in the general area. These discovered additional pre-existing sources included buried, deteriorated drums, viscous product in these drums and surrounding soil, and dark light nonaqueous phase liquid (LNAPL) seeping from beneath portions of a north-south trending concrete footer located along the eastern boundary of the area impacted by the February 2019 release.

On June 14, 2021, following the completion of response actions performed to remediate impacts associated with the February 2019 release, Langan submitted a *Combined Remedial Investigation Report/Final Report*. On August 26, 2021, in response to this submittal, PADEP issued a Letter of Technical Deficiency which requested that additional information be provided to address the identified deficiencies. The deficiencies included the discrepancy in information available on the release locations, incomplete soil and groundwater characterization, and missing documentation related to remedial activities and systematic random sampling. PADEP also requested that some items be re-evaluated for more clarity including the ecological assessment, post-excavation sample depths, and the depth of excavation.

This RI/Final Report provides a comprehensive discussion of the details surrounding the February 2019 release while also documenting the key aspects related to the remediation efforts undertaken. It

outlines the actions implemented by PESRM to remediate the release, describes the additional efforts performed by BDH to address the deficiencies identified by the PADEP, and demonstrates how the remediation efforts effectively mitigated the impacts of the February 2019 release in order to attain the SHS under Act 2. The RI/Final Report also identifies the pre-existing sources of contamination which are unrelated to the incident which were discovered during the investigation and provides details on how these separate issues are being managed and by whom.

Overall, all the requirements for attaining the SHS have been met, and as such, BDH qualifies for cleanup liability protection for conditions associated with the February 2019 136 Naphtha Area Release.

1 Introduction

Terraphase Engineering Inc. (Terraphase) has prepared this *Remedial Investigation and Final Report for the 136 Naphtha Release Area (Girard Point)* (RI/Final Report), on behalf of Bellwether District Holdings, LLC (BDH) (formerly Philadelphia Energy Solutions Refining & Marketing LLC [PESRM]), to detail the results of investigation and remediation in an area where a release of light naphtha product from aboveground piping associated with former Refinery Unit 137 occurred on February 22, 2022. While the aboveground piping was associated with Refinery Unit 137, the release impacted an area near former Refinery Unit 136 (the Site). The Site is located within the Former Philadelphia Energy Solutions refinery facility (the Facility), an approximately 1,300-acre property situated in a highly developed area of Philadelphia. The refinery ceased operations in 2019 and has since been undergoing remediation and redevelopment. The Site location is depicted on **Figure 1**. The release that is the subject of this report occurred prior to Hilco Redevelopment Partners' acquisition of PESRM in June 2020; Hilco Redevelopment Partners is now known as HRP Group. Since acquiring the Facility in June 2020, HRP Group has worked to collect documentation for activities completed prior to its acquisition and to obtain additional data to support demonstration of attainment of the Statewide Health Standard (SHS) under Pennsylvania's *Land Recycling and Environmental Remediation Standard Act* (Act 2).

Remediation activities are being conducted at the Facility under Act 2 by both BDH and Evergreen Resources Group, LLC (Evergreen)¹ in accordance with the Consent Order and Agreement (CO&A) among Pennsylvania Department of Environmental Protection (PADEP), Sunoco, Inc. (R&M) n/k/a Sunoco (R&M), LLC, and PESRM dated August 14, 2012 and the 2020 First Amendment to that Agreement (2020 Amendment). In accordance with the CO&A, Sunoco/Evergreen is responsible for addressing contamination at the Facility resulting from release(s) which occurred before September 8, 2012, i.e., "Pre-Existing Contamination", and PESRM, now known as BDH, is responsible for addressing contamination at the Facility resulting from release(s) which occurred after September 8, 2012, i.e., "Post-September 2012 Contamination."

Investigation and remediation activities were performed by PESRM/BDH² to obtain a release of environmental cleanup liability in accordance with the applicable provisions of Act 2 and Title 25 Pennsylvania Code (25 Pa. Code) Chapter 250 Section 204, as administered by PADEP.

In February 2019, when Refinery Unit 137 was restarted following maintenance, approximately 53,000 gallons of light naphtha were released out of two defects in the aboveground product line. Prior to its shutdown in 2019, Refinery Unit 137 was used to separate raw crude oil into its desired components, including light naphtha. The product was released to the ground surface in the area close to former

² As discussed above, BDH was formerly known as PESRM. In this report, activities conducted before June 2020 will be attributed to PESRM, while those completed after this date will be attributed to BDH.

¹ Evergreen Resources Management Operations, a series of Evergreen Resources Group, LLC, is managing the legacy remedial work for Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC ("Evergreen") and Sunoco (R&M), LLC. For clarity, Sunoco, Inc. n/k/a ETC Sunoco Holdings LLC, Sunoco, Inc. (R&M) f/k/a Sunoco (R&M), LLC n/k/a Energy Transfer (R&M), LLC effective 4/19/2021 and Evergreen shall be referred to collectively as "Evergreen" in this Report.

Refinery Unit 136 (**Figure 2**). The product was observed to flow to the south, parallel to the aboveground piping, and then east toward a sewer catch basin (Stantec 2020). The release was contained by topography and existing drainage features.

PESRM implemented immediate response actions including the immediate removal of liquids from the storm sewer and culvert via vacuum truck, installation of test pits which were advanced along the compromised product line, removal of water/product from the test pits, and the replacement of the damaged section of piping (Stantec 2020). A remedial investigation was subsequently performed to define the extent of the release and to determine the area over which impacted soil should be remediated. During the course of these efforts, pre-existing sources of contamination in the area were discovered including in the footprint of the February 2019 release. This included buried deteriorated drums, viscous product in these drums and surrounding soil, and dark LNAPL seeping from beneath portions of a north-south trending concrete footer located along the eastern boundary of the area impacted by the February 2019 release. Because these conditions represent separate Pre-Existing Contamination, these sources and the related contamination were managed by Evergreen (eFacts PF No. 750870 and 780190). Soil impacted by the February 2019 release was subsequently excavated, containerized, and transported off-site for disposal by PESRM between November 25 and December 12, 2019 (Stantec 2020).

PESRM/BDH submitted a Notification of Intent to Remediate (NIR) to PADEP on June 2, 2021 (eFacts PF No. 850105). A copy of the NIR was also submitted to the local municipality (City of Philadelphia) and a legal notification was published in *The Philadelphia Inquirer* with service to the area. As the NIR indicates, BDH intended to remediate soil at the Site to attain SHS under Act 2. In addition, notification of this RI/Final Report submittal to PADEP was sent to the City of Philadelphia and a legal notification regarding this submittal was published in *The Philadelphia Inquirer* with service to the area. Copies of the June 2021 NIR and April 2025 RI/Final Report notification documents, including proof of publication/delivery, are provided in **Appendix A**.

This Report is organized as follows:

- Section 2 describes the February 2019 release as well as the efforts taken by BDH to remediate impacts to attain SHS. As additional background, this section also discusses the discovery and extent of pre-existing sources of contamination and discussion on the initial *Combined Remedial Investigation Report/Final Report* submitted by Langan.
- Section 3 describes the soil sampling completed by BDH in order to demonstrate attainment of the SHS.
- Section 4 presents the conceptual site model for the Site.
- Section 5 discusses the standards selected.
- Section 6 details the demonstration of attainment to the SHS. Additionally, this section provides the Ecological Soil Screening Evaluation and analytical limits evaluation.
- Section 7 summarizes the post-remediation care plan.
- Section 8 provides the conclusions of the Report.
- Section 9 provides the references used in preparation of this Report.

2 Background

This section describes the February 2019 release and subsequent remedial response and investigations completed by PESRM/BDH and subsequent *Combined Remedial Investigation Report/Final Report* submitted by Langan on June 14, 2021. On August 26, 2021, PADEP issued a *Letter of Technical Deficiency* requesting that additional information be provided to address the identified deficiencies. This report has been prepared to address the comments and requests in PADEP's August 2021 letter.

2.1 February 2019 Release and Immediate Response Actions

The 136 Naphtha Release area is located within the Facility, a former 1,300-acre refinery which is currently undergoing remediation and redevelopment. The Site is approximately 0.04 acres in size and is located in an area that Evergreen has also referred to as Area of Interest (AOI) 7 in their One Cleanup Program documentation. The Site is located north of the Platt Bridge and approximately 300 feet (ft) west of the Schuylkill River (39.90771, -75.21364).

The release occurred on February 22, 2019, after the former Refinery Unit 137 was restarted following maintenance activities. A reported 53,000 gallons of light naphtha product were released to the ground surface from two undiscovered defects in an aboveground product line associated with Refinery Unit 137. The release occurred near the location of former Refinery Unit 136 (see **Figure 2**). Prior to its shutdown in 2019, Refinery Unit 137 separated raw crude oil into its desired components, including light naphtha.

The product was observed to flow to the south, parallel to the aboveground piping, and then east toward the sewer catch basin (Stantec 2020). The release was contained by topography and existing drainage features. PESRM implemented immediate response actions including the removal of liquids from the storm sewer and culvert via vacuum truck. Additionally, test pits³ were installed along the compromised product line and the observed water/product mixture was removed (Stantec 2020). The recovered liquids were moved to and stored within aboveground storage tank GP 272, a three-million-gallon waste oil tank previously located within the former Refinery (Langan 2021). The waste was eventually treated via the former on-facility wastewater treatment system. The damaged section of the product line was replaced with new piping (Stantec 2020).

2.2 Remedial Investigation

To confirm the extent of the February 2019 release, Stantec, on behalf of PESRM, installed and sampled 20 borings (i.e., AOI7-BH-01-2019 through AOI7-BH-20-2019) in March 2019 (Langan 2021). As presented on **Figure 3**, the borings were placed in the vicinity of but outside the observed release area; we note that borings AOI7-BH-10-2019 through AOI7-BH-18-2019 were collected at greater distances from the observed release area (to the east/southeast) than the other borings. Samples were collected

³ These test pits are separate from those shown in the figures as part of this RI/Final Report.

from 0.5 to 3 ft bgs, above the water table.⁴ The samples were analyzed for the PADEP Petroleum Short List for unleaded gasoline (Table III-5 of the *Land Recycling Program Technical Guidance Manual* [PADEP 2021a]). Results of the March 2019 soil sampling are provided in **Appendix B**.

Only benzene and toluene were detected at concentrations above the applicable Medium Specific Concentrations (MSC). Specifically, benzene was detected above MSCs in samples from 4 of 20 borings (i.e., AOI7-BH-08-2019, AOI7-BH-13-2019, AOI7-BH-15-2019, and AOI7-BH-16-2019), and toluene was detected above MSCs in a sample from 1 of 20 borings (i.e., AOI7-BH-08-2019). Boring AOI7-BH-08-2019 is located just south of where the release was observed to flow east toward the sewer catch basin. The other three locations where benzene was detected above the MSCs (i.e., AOI7-BH-13-2019, AOI7-BH-15-2019, and AOI7-BH-16-2019) were at greater distances from the observed release area (to the east/southeast) compared to the other borings. Field observations made during the soil investigation activities indicated evidence Pre-Existing Contamination, including dark staining and degraded hydrocarbon odors in several borings (Stantec 2020). The area where these three samples were collected is separated from the observed release area by several locations with low concentrations of benzene (i.e., AOI7-BH-09-2019, AOI7-BH-10-2019, AOI7-BH-11-2019, AOI7-BH-12-2019, 14-2019, AOI7-BH-17-2019, and AOI7-BH-18-2019), indicating these concentrations are likely related to Pre-Existing Contamination.⁵

Soil sampling has been ongoing by Evergreen in the vicinity of the Site as early as 1992. As presented in **Figures 4a** and **4b**, pre-existing impacts and elevated benzene and toluene concentrations identified during the March 2019 investigation conducted in response to the February 2019 release are consistent with pre-release conditions in AOI 7 as documented by Evergreen in the *Remedial Investigation Report, Area of Interest 7* (AOI 7 RIR; GHD 2017).

2.3 Excavation and Discovery of Pre-Existing Sources

Based upon the aerial extent of the release and the results of the March 2019 soil sampling, PESRM initially estimated the extent of the remedial excavation needed to address the February 2019 release. Between November 25 and December 12, 2019, as presented on **Figure 5**, Stantec, on PESRM's behalf, conducted an effort to remediate impacted soil via excavation. The horizontal extent of the excavation was based on visual observations and photoionization detector (PID) readings. Vertically, the excavation extended to the water table and ranged in depth from 2 to 6 ft below ground surface (bgs). Overall, approximately 400 tons of soil were excavated and transported off-facility for disposal at Clean Earth of New Castle, Delaware (Stantec 2020).

⁴ The water table ranged from 4 to 6 ft bgs (Langan 2021).

⁵ In accordance with the Consent Order and Agreement (CO&A) among Pennsylvania Department of Environmental Protection (PADEP), Sunoco, Inc. (R&M) n/k/a Sunoco (R&M), LLC, and PESRM (now known as BDH) dated August 14, 2012 and the 2020 First Amendment to that Agreement (2020 Amendment), Sunoco/Evergreen is responsible for addressing contamination at the Facility resulting from release(s) which occurred before September 8, 2012, i.e., "Pre-Existing Contamination", and BDH is responsible for addressing contamination at the Facility resulting from release(s) which occurred the Facility resulting from release(s) which occurred after September 8, 2012, i.e., "Post-September 2012 Contamination."

During the 2019 excavation activities, Stantec field staff observed additional pre-existing sources of petroleum contamination (Stantec 2020). As shown on **Figure 5**, this included the discovery of four buried drums within the excavation at depths approximately 3 to 4 ft bgs. An unknown viscous product was observed in the drums and the surrounding soil. Additionally, dark light nonaqueous phase liquid (LNAPL) was observed seeping from beneath a concrete footer in the northern portion of the excavation. In both instances, free product was removed via vacuum truck and additional soil was excavated and containerized for transportation off-site by Evergreen. Because these conditions represented Pre-Existing Contamination, Evergreen managed the disposal and drums and surrounding soil (Stantec 2020).

2.4 Post-Excavation Soil Sampling

Stantec completed post-excavation sampling on December 12, 2019 on behalf of PESRM. As shown on **Figure 6**, Stantec collected 12 post-excavation samples (i.e., AOI7-PE-01 through AOI7-PE-12) from within the excavation including from the sidewalls and base. According to Stantec, the sampling locations were determined using PADEP's systematic random sampling tool. Stantec's (2020) *Unit 137 Line Release in the Area of Former 136 Unit: Investigation Summary* notes that the post-excavation borings were installed using a systematic random sampling approach consistent with 25 Pennsylvania Code § 205.703(c); however, documentation was never provided. These samples were analyzed for PADEP Petroleum Short List for unleaded gasoline (PADEP 2021a) and none of the samples identified constituent concentrations greater than the applicable MSCs.

2.5 Extent of Pre-Existing Sources of Contamination

Following the discovery of the four degraded buried drums in the 2019 excavation footprint, on behalf of Evergreen, Stantec completed an additional subsurface investigation in 2021. The objective of this additional investigation was to evaluate the general area for potential additional buried drums. On November 9 and 10, 2021, Lewis Environmental, on behalf of Stantec, advanced six test pits to a depth of approximately 5 ft bgs to the west of the February 2019 release area where the previously identified buried drums were identified, as shown on **Figure 7**. An additional buried drum was identified in Test Pit #5. Soil in the vicinity of the drum appeared "*visually impacted with a petroleum-like dark, viscous substance*" (Stantec 2023). Approximately 23.5 tons of soil were excavated and transported off-Facility for disposal at Clean Earth of New Castle, Delaware (Stantec 2023). Six biased post-excavation samples and a waste characterization sample were collected. Post-excavation samples were analyzed for Evergreen's Comprehensive List compounds. Concentrations of benzene, 1,1-biphenyl, and lead were identified at concentrations greater than the applicable MSCs in these samples. These three constituents have historically been identified in the general area of AOI 7 at concentrations greater than applicable MSCs.

Stantec subsequently installed two shallow monitoring wells (i.e., C-175 and C-176) where impacts were observed in Test Pits #5 and #6 on November 29, 2021. LNAPL was not observed during the installation of these wells nor in any subsequent gauging events between March 2022 and April 2023 (Stantec 2023). Multiple rounds of groundwater samples were collected from these two new monitoring wells as well as from two downgradient existing monitoring wells (i.e., C-61 and C-105). The samples were

analyzed for Evergreen's Comprehensive List compounds. In the source area monitoring wells (i.e., C-175 and C-176), elevated concentrations were limited to select polycyclic aromatic hydrocarbons (PAH) and lead. Only benzo(a)pyrene and lead were detected at concentrations greater than the applicable MSCs in the downgradient wells. The constituents identified in these four wells are consistent with what Evergreen identified in their AOI 7 RIR (GHD 2017). Additionally, the presence of lead in the soil and groundwater samples indicates that contamination is not associated with release(s) from Refinery Unit 137 or its piping as light naphtha does not contain lead.

On November 30, 2021 and January 19, 2022, on behalf of Evergreen, Stantec completed additional soil characterization and collected surface and subsurface samples (i.e., AOI7-BH-21-01 through AOI7-BH-21-14) downgradient of the February 2019 release and area where the additional buried drum was discovered. Samples were analyzed for Evergreen's Comprehensive List compounds. Only vanadium was detected at concentrations in soil greater than the applicable MSCs (Stantec 2023).⁶

Based on the identification of multiple buried drums, LNAPL seepage from beneath the concrete footer in the northern portion of the excavation, and soil contamination discussed in Sections 2.2, 2.3, and this section, Pre-Existing Contamination is present throughout the area including in proximity to, and around, the area of the February 2019 release.

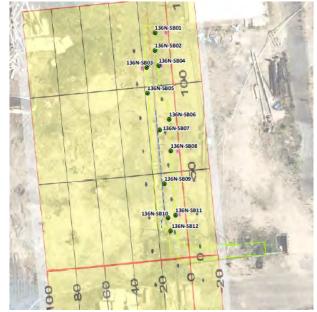
2.6 Langan's (2021) Combined RI/FR Submission

On June 14, 2021, following the completion of response actions performed to remediate impacts associated with the February 2019 release, Langan submitted a *Combined Remedial Investigation Report/Final Report* on behalf of BDH. On August 26, 2021, in response to this submittal, PADEP issued a *Letter of Technical Deficiency* requesting that additional information be provided to address the identified deficiencies. These deficiencies included the discrepancy in information available on the release area, incomplete soil and groundwater characterization, and missing documentation related to remedial activities and placement of sampling locations in a systematic random manner. PADEP also requested that some items be re-evaluated for more clarity including the ecological assessment, post-excavation sample depths, and the overall depth of the excavation.

3 Attainment Sampling

Based on PADEP's review of these activities as documented in Langan's *Combined Remedial Investigation Report/Final Report* (2021), as discussed in Section 2.6, PADEP noted in their August 26, 2021 *Letter of Technical Deficiency* that the documentation for the systematic random soil sampling grid design was not included in the report as required by 25 Pa. Code Section 250.703, as referenced by 25 Pa. Code 250.312(d). In response, Terraphase, on behalf of BDH, implemented a scope of work to re-

⁶ The applicable MSCs for vanadium have increased since Stantec submitted the *Former Unit 136 Investigation Activities (2021-2022), Supplement to 2020 Letter Report* on June 19, 2023. As a result, the November 2021 and January 2022 soil characterization samples collected do not identify any concentrations greater than the applicable MSCs for any constituents analyzed.


collect "post-excavation" attainment samples within the footprint of the prior excavation area at locations determined using PADEP's Systematic Random Sampling tool. This Section describes the procedure for the establishing the scope of the additional "post-excavation" attainment sampling.

Pursuant to 25 Pa. Code Sections 250.703(d) and 250.707(b)(1)(i), Terraphase performed attainment sampling within the excavation footprint in May 2024. Sampling locations were selected using PADEP's Systematic Random Sampling Workbook, an Excel spreadsheet developed by PADEP to determine random sampling points within an area or volume to be sampled in order to demonstrate attainment under Act 2. Outputs of PADEP's Systematic Random Sampling Workbook are included in **Appendix C**. Soil samples were proposed to be collected from the top half foot of soil from the base of the excavation or from the sidewall of the excavation at each designated location. During sampling, the water table was encountered; however, samples were not collected from the saturated zone. In instances where the water table was encountered shallower than the proposed sampled depth, the sample was collected at the 0.5 ft interval above the water table.

The samples were submitted for analysis for PADEP's Short List of Unleaded Gasoline Parameters (PADEP 2021a) which includes the following constituents: benzene, cumene, ethyl benzene, methyl tertbutyl ether, toluene, 1,2,4-trimethylbezene, 1,3,5-trimethylbenzene, xylenes (total), and naphthalene. This list is consistent with the analyses performed initially in December 2019 following the excavation of soil in the release area.

Additional soil characterization samples were collected in October 2024 to help support a determination of the vertical and horizontal extent of impacts associated with the February 2019 release. This effort included the collection of additional surface and subsurface soil samples, each analyzed for benzene and toluene.

Soil samples were placed directly into laboratory provided glassware, stored on ice in a cooler under appropriate chain of custody protocol, and submitted for analysis by Pace Analytical of Westborough, Massachusetts – a PADEP-certified laboratory. The soil samples were analyzed for volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC) by United States Environmental Protection Agency (USEPA) methods 8260D and 8270E, respectively. Copies of the laboratory data deliverables are included as **Appendix D**. Results of the quality assurance and quality control sample analyses and a log of general checks including the methodology used to select between multiple results when provided by the analytical laboratory are provided in **Appendix E**.

Systematic Random Sampling Locations Northern Excavation Area (Terraphase 2024)

3.1 May 2024 Sampling

Due to the shape of Stantec's 2019 excavation, the area was initially split into two sections (i.e., Northern and Central) for the purposes of determining new attainment sampling points based on a systematic random procedure. In determining attainment of the SHS, the samples collected from each section were subsequently combined as one overall excavation area. Since Stantec's 2019 excavation *"extended to the depth of the observed water table which is tidally influenced and ranged from approximately 2.0 to 6.0 ft bgs,"* (Stantec 2020) in determining the number of attainment samples needed, Terraphase conservatively assumed that the two excavation areas were uniformly advanced to

a depth of 6 ft bgs. As discussed in Section 3, in instances where the water table was encountered shallow than 6 ft bgs (or the proposed sample interval), samples were not collected in saturated soil, but rather from the 0.5 ft interval above the water table.

Using PADEP's Systematic Random Sampling tool, 20 attainment ("post-excavation") sampling locations were identified⁷ and sampled on May 23 and 24, 2024. The attainment soil samples were collected either from the base or sidewall of the excavation area.

As shown on **Figure 8**, the results of the sampling indicated two locations (i.e., 136N-SB07 and 136N-SB15) with concentrations of benzene greater than the Non-Residential (Non-Res) Soil-to-Groundwater (SGW) MSCs (i.e., 0.75 milligrams per kilogram [mg/kg] and 84 mg/kg, respectively).

Systematic Random Sampling Locations Central Excavation Area (Terraphase 2024)

3.2 October 2024 Sampling

Based on the May 2024 attainment re-sampling results, BDH completed additional soil characterization sampling on October 28, 2024. The intent of this additional sampling was to determine whether the concentrations of benzene at location 136N-SB15 represented conditions associated with the February 2019 release or contamination associated with pre-existing sources of contamination in the area (**Figure 9**) especially with consideration for the benzene and toluene concentrations observed in a sample collected prior to the 2019 excavation at a location just south of the February 2019 release area (i.e., AOI7-BH-08-2019), which as discussed in Section 2.2, suggested evidence of Pre-Existing Contamination in the area unrelated to the release. All of the proposed borings were located outside of the excavation, excluding the deeper vertical sample collected at 136N-SB15. The water table was also encountered during the installation of most borings; however, samples were not collected from the saturated zone.

⁷ Twelve sampling locations were identified in the Northern Excavation area and eight attainment sampling locations were identified in the Central Excavation area.

As shown on **Figure 10**, the results of the October 2024 soil sampling identified benzene or toluene in 10 of the 14 locations at concentrations greater than the applicable MSCs. Toluene was identified at a concentration greater than the Non-Res SGW MSC at one location (i.e., 136N-SB22) at the southwestern corner outside of the boundary of February 2019 release area. This area is separated from AOI7-BH-08-2019 which also exhibited a toluene concentration greater than MSCs by several sampling locations with concentrations that were below the applicable MSCs.

Benzene was identified at concentrations greater than the Non-Res Direct Contact (DC) and SGW MSCs in 10 of the 14 locations. As shown on **Figure 10**, samples collected to define the extent of benzene concentration in the area showed that benzene concentrations increase in soil south from the February 2019 release area (i.e., maximum benzene concentration at 136N-SB15 is 84 mg/kg while the maximum benzene concentration at 136N-SB28 is 790 mg/kg). Sampling locations south of AOI7-BH-08-019, again located outside of the February 2019 release area, exhibited lower concentrations of benzene (i.e., maximum concentration at AOI7-BH-08-019 is 40 mg/kg, while concentrations range from 1.6 mg/kg to 12 mg/kg and 1.3 to 0.71 mg/kg further southwest and south, respectively).

Overall, the following lines of evidence demonstrate that benzene and toluene are present in soil in the general area as a result of Pre-Existing Contamination not associated with the February 2019 release:

- The range and spatial distribution of benzene and toluene concentrations in soil in the areas of 136N-SB15, AOI7-BH-08-019, and the October 2024 soil sampling locations indicate separate unrelated contamination from the February 2019 release. Toluene exceedances were limited to two locations (i.e., 136N-SB22 and AOI7-BH-08-019), both of which are located outside of the excavation and unlikely to be associated with the February 2019 release. Benzene concentrations increase significantly in borings south of 136N-SB15, suggesting that the concentration detected at this boring is due to a separate release(s) south of the February 2019 release. Benzene concentrations at and around AOI7-BH-08-019, outside of the excavation area, exhibit concentrations of benzene consistent with the range of concentrations found generally by Evergreen in AOI 7 (see Figure 4a).
- **Figures 4a** and **4b** demonstrate that concentrations of benzene and toluene, respectively, in soil observed in the October 2024 sampling are consistent with the range of concentrations found generally by Evergreen in AOI 7.
- During the May and October 2024 sampling completed by BDH, petroleum-like odor and/or sheen were identified in the majority of the borings installed by BDH (see Appendix F). This is consistent with findings by Stantec (2020, 2023) during their 2019 investigations which suggested pre-existing sources of contamination unrelated to the February 2019 release. Specifically, 15 of the 20 borings installed by BDH in May 2024 and 11 of the 14 borings installed in October 2024 indicated the presence of petroleum-like odor and/or sheen. Additionally, these observations were only identified in the subsurface (i.e., deeper than 2 ft bgs) suggesting conditions more consistent with historic pre-existing impacts in the area rather than conditions associated with the February 2019 release to the ground surface.
- Benzene and toluene have been identified in soil in AOI 7, including in samples collected in proximity to the Site, at concentrations greater than the applicable MSCs since 1992.

Based on these lines of evidence, 136N-SB15 which was collected in May 2024 from the presumed sidewall of the 2019 excavation, exhibits conditions that are not related to February 2019 release but rather Pre-Existing Contamination. Therefore, the sampling results from 136N-SB15 have been excluded from the attainment evaluation.

3.3 Review of Attainment Sampling Results

In accordance with 25 Pa. Code Section 250.707(b)(1)(i), Terraphase evaluated whether the benzene soil sampling results⁸ from the "post-excavation" samples attain SHS using the 75 percent (%)/10x rule. The approach requires that (1) 75% of the samples collected for attainment purposes exhibit concentrations equal to or less than the applicable standard and (2) no individual sample exhibits a concentration more than ten times the applicable standard. With consideration for the attainment samples collected from the 2019 excavation area, none exhibited benzene concentrations greater than ten times the Non-Res SGW MSC of 0.5 mg/kg and 19 out of the 20 samples⁹ (95%) were equal to or less than this MSC. These results demonstrate that SHS has been attained in this area for the February 2019 release.

Analytical results from the 2024 attainment and additional soil characterization sampling are provided in **Tables 1** and **2**, respectively. Calculations demonstrating attainment of the 75%/10x rule requirements are provided in **Appendix G**.

4 Conceptual Site Model

The Facility, a former 1,300-acre refinery, is currently being remediated and redeveloped. Remediation activities are being conducted at the Facility under Act 2 by both BDH and Evergreen in accordance with the 2012 Buyer-Seller Agreement and the 2020 First Amendment to that Agreement. The Facility operated as a petroleum refinery between 1860 and 2019. The refinery ceased operations in 2019 and since July 2020 has been undergoing demolition and closure activities. Prior to its shutdown in 2019, Refinery Unit 137 separated raw crude oil into its desired components, including light naphtha. At the time of the release, no active operations or ongoing storage of petroleum products, other than aboveground transmission lines, were occurring in the former Unit 136 area.

In February 2019, approximately 53,000 gallons of light naphtha were released out of two undiscovered defects in an aboveground product line. PESRM implemented immediate response actions including the removal of liquids from the storm sewer and culvert, installation of test pits, removal of water/product from the test pits, and the replacement of damaged section of piping (Stantec 2020). In March 2019, a remedial investigation was subsequently performed to define the extent of the February 2019 release and to determine the area over which impacted soil should be remediated. Based upon the aerial extent

⁸ As discussed in Section 3.2, this evaluation excludes sample 136N-SB15-1.0-1.5.

⁹ The count includes the original 12 samples from the Northern Excavation area, the seven samples from the Central Excavation Area (excluding 136N-SB15-1.0-1.5), and a field duplicate, which were collected as part of the May 2024 attainment sampling. Pursuant to 25 Pa. Code Section 250.703(d), 20 sampling points meet the requirement necessary for the combined soil volume of the Northern and Central Excavation areas (i.e., approximately 343 cubic yards).

of the release and results of the March 2019 soil sampling, soil impacted by this release was excavated, containerized, and transported off-Facility for disposal in November and December 2019 (Stantec 2020). Post-excavation samples were collected in December 2019.

During these excavation activities, pre-existing sources of contamination were discovered within and adjacent to the footprint of the excavation (i.e., buried drums and free product). As a result, on behalf of Evergreen, test pits were installed west of the February 2019 release area in November 2021. Soil was transported off-Facility for disposal by Evergreen. During the test pit installation, an additional drum was identified, and post-excavation samples were collected within that test pit. Additionally, Evergreen installed two shallow monitoring wells and conducted multiple rounds of groundwater sampling and gauging. In November 2021 and January 2022, additional soil characterization samples were collected, on behalf of Evergreen, downgradient of the recently discovered buried drum.

On June 14, 2021, following the completion of response actions performed to remediate impacts associated with the February 2019 release, Langan, on behalf of BDH, submitted a *Combined Remedial Investigation Report/Final Report*. On August 26, 2021, in response to this submittal, PADEP issued a *Letter of Technical Deficiency* which requested that additional information be provided to address the identified deficiencies. In order to address one of the noted deficiencies, Terraphase on behalf of BDH implemented a scope of work to complete additional attainment soil sampling and soil characterization sampling in May 2024 and October 2024, respectively. Terraphase also prepared a response to PADEP comments on behalf of BDH, which is provided in **Appendix H**.

Based on the identification of multiple buried drums, LNAPL seepage from beneath the concrete footer in the northern portion of the excavation, and soil contamination consistent with the surrounding area (**Figures 4a** and **4b**), as discussed in Section 2, Pre-Existing Contamination exists throughout the area and in proximity to the Site. As discussed in Section 3, BDH's May 2024 attainment soil sampling demonstrates attainment of the SHS for the Site. Therefore, contamination associated with the February 2019 release has been removed and remaining Pre-Existing Contamination in the area is associated with unrelated release(s) which Evergreen has and will be managing as part of the 2012 Buyer-Seller Agreement and the 2020 First Amendment to that Agreement (eFACTS PF No. 780190).

4.1 Site Setting

The Site is located within Girard Point and within Evergreen's AOI 7. The Site is currently uncovered and without structures. Access to the Facility is controlled at the Facility perimeter and the Site can be accessed by authorized individuals via an unpaved road connecting to Lanier Avenue, approximately 0.5 miles to the east of the Site. There are no on-site surface water bodies, and the Schuylkill River is located approximately 300 ft to the west. The nearest residential area is located approximately 1.2 miles east of the Site.

4.2 Topography

The ground surface at the Site is approximately 7.4 ft above mean sea level. The topography at the Site is generally flat, but with a gentle slope to the south, parallel to the aboveground pipe run, and a gentle

slope to the east at the pipe turn (Stantec 2020). Regional topography slopes gently to the west towards the Schuylkill River, the nearest surface water body.

4.3 Regional Geology and Hydrogeology

The Facility is located within the Atlantic Coastal Plain Physiographic Province of Pennsylvania. The Atlantic Coastal Plain is a physiographic province that is defined as having a flat topography, underlain by unconsolidated sediments that thicken to the southeast. The Coastal Plain deposits are sand, gravel, silt, and clay which drape over crystalline igneous and metamorphic rocks. In general, the resulting sediments are approximately 250 ft thick along the Delaware River. These sediments unconformably overlie much older, very complexly deformed rocks of the Piedmont physiographic province. The Coastal Plain deposits in the vicinity of the Facility consist of anthropogenic fill underlain by quaternary deposits.

Much of the Facility and surrounding area is underlain by fill material, which was placed for the purpose of reclaiming lowlands along the banks of the tidal Delaware and Schuylkill Rivers during industrialization. Below the fill material, sediments consist of gray, muddy deposits with occasional sand, gravel, and organic-rich lenses. These sediments were deposited in floodplain, channel, and marsh environments through the Holocene. The most recent deposits are poorly consolidated and below the water table, as a result of their relatively young geologic age and position along the Schuylkill River (tributaries and creeks). Below the Holocene deposits is Pleistocene glacial outwash, commonly referred to as the "Trenton Gravel" along the Delaware River valley. Cretaceous-age sand and clay units making up the Potomac-Raritan-Magothy aquifer system underly the Pleistocene deposits.

The sedimentary record near the Facility consists of a complex series of water-bearing sand units which can comprise one or more hydrostatic units. Previous investigations conducted at the Facility have identified two saturated zones, including an unconfined shallow groundwater unit (occurring within the Holocene and Trenton Gravel deposits) and a deep groundwater unit known as the Farrington Sand, which is part of the Potomac-Raritan-Magothy aquifer system. The deeper groundwater unit is separated by a clay unit, thus the deeper groundwater has been classified as a semi-confined aquifer.

4.4 Local Geology and Hydrogeology

Local geology is generally consistent with the regional geology described above. Investigations conducted on behalf of BDH in the vicinity of the Site (in Tank Group 06) indicated the presence of anthropogenic fill at least 5 ft thick. Soil beneath the fill layer generally consisted of brown, black, and gray sands and silt. During investigation and excavation activities for this Site, soil observed from the surface to a depth of 5 ft bgs were reported to consist of fill materials overlaying tan to dark brown silty sand and silt. Boring logs for the soil borings installed by Terraphase on behalf of BDH during attainment and additional soil characterization sampling are provided in **Appendix F**.

During previous investigations in the area of the Site, unconfined aquifer groundwater has been encountered at a depth of approximately 2 to 6 ft bgs (Stantec 2020). Groundwater at the Facility has historically been interpreted to flow to the south toward the convergence of the Delaware and Schuylkill Rivers.

Based on the Site Characterization conducted by BDH in Tank Group 06 and the Remedial Investigation Report, Area of Interest 7 (AOI 7 RIR; GHD 2017) conducted by Evergreen, groundwater at the Site likely flows west toward the Schuylkill River. In the vicinity of the Site, groundwater elevations are higher adjacent to the bulkhead along the western portion of Tank Group 06 and beneath the former aboveground storage tank pads, likely resulting from slower recharge associated with lower permeability soil in these areas. The mounded groundwater areas form a trough interior to the northwestern portion of Tank Group 06 into which groundwater flows radially. These localized features are common across the Facility as documented in the AOI 7 RIR (GHD 2017), which concluded that there are lower hydraulic conductivity soil present along the bulkhead compared to the soil in other areas of the Site, which cause the mounding along the bulkhead and adjacent depression. This observation is also consistent with Stantec's (2025) Volume 2: Sitewide Fate and Transport Remedial Investigation Report. The AOI 7 RIR states that the hydraulic gradient toward the west is 0.001 (ft/ft), consistent with historical groundwater elevation contours and confirms flow towards the Schuylkill River. As discussed in Sections 3 and 3.1, the water table was encountered during the May and October 2024 sampling events; however, samples were collected from at least the 0.5 ft interval above the water table or shallower. While the water table was encountered during soil sampling activities, groundwater elevation data was not collected, and groundwater flow interpretation is not a subject of this investigation.

4.5 Land and Groundwater Use

Currently, the Facility (which includes the Site) is undergoing redevelopment activities. The land is zoned for Industrial Use.¹⁰ The Site is currently uncovered and lightly vegetated.

Current and reasonably anticipated future land use in the area of the Site is commercial/industrial. Following redevelopment, much of the area is also expected to be covered by hardscape (e.g., building pads, drive aisles, parking lots, roadways) or other features that will function as barriers to direct contact exposure. Once redevelopment plans have been finalized, in accordance with the 2012 Buyer-Seller Agreement and the 2020 First Amendment to that Agreement, additional investigation and/or evaluation of potential vapor intrusion pathways will be conducted to further evaluate whether conditions could pose an unacceptable risk to future building occupants such that risk management action (e.g., remediation, vapor mitigation) is warranted.

Stemming from several efforts to assess the potential for current and reasonably anticipated future use of groundwater at and in the vicinity of the Facility, Evergreen has documented no confirmed drinking water supply wells within 1-mile of the Facility. These efforts have included several well searches, field verification, and a review of the City of Philadelphia's ordinances. In 2021, Evergreen supplemented these efforts by reviewing the City of Philadelphia's publicly available information concerning potable drinking water intakes, contacting PADEP's Safe Drinking Water Program, contacting the City of Philadelphia's Health Department, contacting the City of Philadelphia Water Department, contacting the City of Philadelphia Department of Parks and Recreation, conducting updated database searches (paGWIS and eMapPA), coordinating with the PADEP to obtain information from the New Jersey

¹⁰ <u>https://openmaps.phila.gov/</u>.

Department of Environmental Protection, and providing additional documentation concerning the institutional controls at the Facility which prohibit groundwater use (Evergreen 2021). As a result, groundwater on-facility and off-facility is not a current or reasonably anticipated future source of potable or nonpotable water.

5 Selection of Standards

BDH has selected the SHS for the Site. Based upon current and reasonably anticipated future land and groundwater use at and in the vicinity of the Site, the following MSCs have been used to evaluate the results of soil sampling conducted at the Site. Concentrations in soil were compared against the:

- Non-Res DC Numeric Values for Surface Soil (0-2 ft bgs)
- Non-Res DC Numeric Values for Subsurface Soil (2-15 ft bgs)
- Non-Res SGW Numeric Values for Used Aquifers (Total Dissolved Solids [TDS] ≤ 2,500)

Soil analytical results were compared to PADEP's Non-Res Vapor Intrusion Screening Levels (VISL) as part of this evaluation; however, there is currently no vapor intrusion exposure in the area (i.e., vapor intrusion pathway is incomplete). Future buildings at the Facility will be subject to vapor intrusion investigation and evaluation to determine if conditions could pose a potential unacceptable risk to future occupants. The comparison to non-residential numeric values is appropriate since the future land use in the area of the Site is commercial/industrial.

6 Demonstration of Attainment

This section provides a summary of the constituents detected in soil at the Site based on the characterization activities and how the efforts to remediate soil have resulted in conditions which attain the SHS.

6.1 Attainment of SHS

As discussed in Section 3, attainment sampling subsequent to soil removal activities has resulted in the attainment of the SHS for each of the constituents for which soil was analyzed. BDH has demonstrated attainment of the SHS for the following constituents:

Naphthalene

Volatile Organic Compounds

Semi-Volatile Organic Compounds

- Benzene
- Cumene
- Ethyl Benzene
- Methyl tert-butyl ether
- Toluene
- 1,2,4-Trimethylbenzene
- 1,3,5-Trimethylbenzene
- Xylenes (total)

The May 2024 ("post-excavation") attainment soil samples were collected at the base and sidewalls of the 2019 excavation. The results of the soil sampling identified benzene in soil at concentrations greater than the applicable MSCs. No other constituents were identified at concentrations greater than the applicable MSCs in any of the samples collected to characterize conditions associated with the February 2019 release.¹¹

As specified in 25 Pa. Code Section 250.707(b)(1)(i), 20 (i.e., 19 samples and a field duplicate) attainment samples were collected during a single event subsequent to the excavation. This sampling event was successful in demonstrating attainment of the SHS for benzene via the 75%/10x rule. Overall, these data demonstrate attainment of the SHS for benzene as well as the other detected constituents at the Site which could be associated with the February 2019 release.

6.2 Ecological Screening Evaluation

The following describes the ecological screening evaluation that was performed for the Site. This evaluation was conducted in accordance with Section II.B.5 of the *Land Recycling Program Technical Guidance Manual* (PADEP 2021a). The regulatory framework for conducting an ecological screening evaluation under the SHS is outlined in Section II.B.2(e) and summarized in the Ecological Screening Flow Chart provided in Figure II-16 of the *Land Recycling Program Technical Guidance Manual* (PADEP 2021a). The key elements of the screening procedure are comprised of nine steps.

The initial screening phase of the process consists of Step 1, as follows:

• Step 1: Presence of Light Petroleum Product Constituents

As indicated on Figure II-16 of the Land Recycling Program Technical Guidance Manual (PADEP 2021a), after completion of the initial screen (Step 1), the remediator may be able to determine that no further ecological screening is required.

¹¹ Although toluene was identified at concentrations above the applicable MSCs in the October 2024 additional soil characterization sampling, as discussed in Section 3.2, these concentrations of toluene were identified outside of the boundary of February 2019 release area and are Pre-Existing Contamination.

Step 1: Presence of Light Petroleum Product Constituents

The first step in the ecological screening process is to determine whether the constituents present in onsite surface soil (soil at a depth of up to 2 ft) or sediment are related only to light petroleum products (i.e., gasoline, jet fuel A, kerosene, #2 fuel oil/diesel fuel), which have relatively low polycyclic aromatic hydrocarbon content (American Society for Testing and Material [ASTM] International E1739-95). If light petroleum product constituents (including benzene, toluene, ethyl benzene, and xylenes [total]) are the only constituents detected on-site, then the screening process moves to Step 9 (Final Report: No Further Ecological Evaluation Required). At the Site, only light petroleum products have been detected above the laboratory RLs and therefore, no further ecological evaluation is required.

6.3 Analytical Limits Evaluation

For non-detect constituents, reporting limits (RL) were evaluated against the applicable MSCs. None of the constituents analyzed by BDH exhibited RLs above the applicable MSCs.

7 Post-Remediation Care Plan

In accordance with Sections III.E.3, IV.A, and IV.H of the *Land Recycling Program Technical Guidance Manual* (PADEP 2021a), institutional and, as needed, engineering controls will be implemented as part of a post-remediation care plan to maintain attainment of the SHS, in the event that occupied buildings are planned in proximity to the Site.

As an institutional control, prior to their construction and occupancy, on-facility buildings which could be occupied in the future will be subject to vapor intrusion investigation and evaluation to determine if conditions (i.e., volatilization of constituents of potential concern [COPC] from soil, groundwater, and/or light non-aqueous phase liquid) could pose an unacceptable risk to occupants. As needed, vapor mitigation systems will be incorporated into the design and construction of such buildings as engineering controls where potentially unacceptable vapor intrusion risks are identified. These activities and use limitations will eliminate the potential for future unacceptable exposures to COPC at the Site via vapor intrusion.

8 Summary and Conclusions

Terraphase has prepared this RI/Final Report, on behalf of BDH, to detail the results of investigation and remediation activities completed in an area where a release of light naphtha product, from aboveground piping, occurred on February 22, 2019. The activities described in this RI/Final Report were performed in accordance with the applicable provisions of Act 2 and 25 Pa. Code Section 250 Section 204.

The aboveground pipeline which caused the release was associated with Refinery Unit 137. This Unit separated raw crude oil into its desired components, including light naphtha. BDH conducted immediate interim response actions, which included the removal of liquids from the storm sewer and culvert via vacuum truck, investigation and sampling activities, excavation of soil visually impacted by the release, and post-excavation soil sampling. During investigation and remedial activities, additional pre-existing sources of contamination in the general area were identified within the aerial footprint of the February 2019 release, included the discovery of buried deteriorated drums, viscous product in these drums and surrounding soil, and dark LNAPL seeping from beneath portions of a north-south trending concrete footer located along the eastern boundary of the area impacted by the February 2019 release.

Following the completion of the response actions performed to remediate impacts associated with the February 2019 release, Langan submitted a *Combined Remedial Investigation Report/Final Report* on June 14, 2021. On August 26, 2021, in response to this submittal, PADEP issued a *Letter of Technical Deficiency*, which requested additional information be provided to address the identified deficiencies. These deficiencies included the discrepancy in information available on the release locations, incomplete soil and groundwater characterization, and missing documentation related to remedial activities and systematic random sampling. PADEP also requested that some items be re-evaluated for more clarity including the ecological assessment, post-excavation sample depths, and the depth of excavation.

This RI/Final Report provides a comprehensive discussion of the details surrounding the February 2019 release while also documenting several key aspects related to the remediation efforts undertaken. It outlines the actions implemented by BDH to remediate the release, describes the additional efforts performed to address the deficiencies identified by the PADEP, and demonstrates how the remediation efforts effectively mitigated the impacts of the February 2019 release, attaining the SHS under Act 2. In doing so, the RI/Final Report identifies pre-existing sources of contamination unrelated to the incident which were discovered during the investigation and explains that these separate issues are being managed by Evergreen under eFACTS PF No. 780190.

Terraphase concludes that all the requirements of the SHS have been met, and as such, BDH qualifies for cleanup liability protection for conditions associated with the February 2019 136 Naphtha Area Release.

9 References

- Evergreen. 2021. Letter to Ms. Lisa Strobridge. *RE: PADEP Comments Public Involvement Remedial Investigation Report*. eFACTS PF No. 780190. August 28.
- GHD. 2017. Remedial Investigation Report, Area of Interest 7. June 9.
- Langan Engineering and Environmental Services, Inc. (Langan). 2021. Combined Remedial Investigation/Final Act 2 Report. June 14.
- Pennsylvania Department of Environmental Protection (PADEP). 2021a. Land Recycling Program Technical Guidance Manual. March 27.

____. 2021b. Letter of Technical Deficiency. August 26.

Stantec. 2020. Unit 137 Line Release in the Area of Former 136 Unit: Investigation Summary. November 13.

___. 2023. Former Unit 136 Investigation Activities (2021-2022), Supplement to 2020 Letter Report. June 19.

___. 2025. Volume 2: Sitewide Fate and Transport Remedial Investigation Report. January 2.

Tables

- 1 Summary of Soil Attainment Analytical Results
- 2 Summary of Additional Soil Characterization Analytical Results

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB01 136N-SB01-1.0-1.5 1.0 - 1.5 5/23/2024 Northern Excavation	136N-SB01 136N-SB01-1.0-1.5D 1.0 - 1.5 5/23/2024 Northern Excavation; FD	136N-SB02 136N-SB02-3.0-3.5 3.0 - 3.5 5/23/2024 Northern Excavation	136N-SB03 136N-SB03-3.0-3.5 3.0 - 3.5 5/23/2024 Northern Excavation	136N-SB04 136N-SB04-3.5-4.0 3.5 - 4.0 5/23/2024 Northern Excavation	136N-SB05 136N-SB05-2.0-2.5 2.0 - 2.5 5/23/2024 Northern Excavation	136N-SB06 136N-SB06-2.0-2.5 2.0 - 2.5 5/23/2024 Northern Excavation
Volatile Organic Compounds											
Benzene	280	330	0.5	0.13	ND (0.00066)	ND (0.00069)	ND (0.028)	0.0032 (0.00042)	ND (0.00041)	ND (0.0005)	0.008 (0.00047)
Cumene	10000	10000	2500	2500	ND (0.0013)	ND (0.0014)	0.078 (0.056)	0.016 (0.00083)	0.00016 J (0.00082)	ND (0.00099)	0.0082 (0.00094)
Ethyl Benzene	880	1000	70	46	ND (0.0013)	ND (0.0014)	0.024 J (0.056)	0.0015 (0.00083)	ND (0.00082)	ND (0.00099)	0.002 (0.00094)
Methyl tert-butyl ether	8500	9800	2	1.4	ND (0.0026)	ND (0.0028)	ND (0.11)	ND (0.0017)	ND (0.0016)	ND (0.002)	ND (0.0019)
Toluene	10000	10000	100	44	ND (0.0013)	ND (0.0014)	0.03 J (0.056)	0.0031 (0.00083)	ND (0.00082)	ND (0.00099)	0.00074 J (0.00094)
1,2,4-Trimethylbenzene	4700	5400	300	300	ND (0.0026)	ND (0.0028)	0.034 J (0.11)	0.049 (0.0017)	ND (0.0016)	ND (0.002)	0.0064 (0.0019)
1,3,5-Trimethylbenzene	4700	5400	93	93	ND (0.0026)	ND (0.0028)	0.013 J (0.11)	0.014 (0.0017)	ND (0.0016)	ND (0.002)	0.0031 (0.0019)
Xylenes (total)	7900	9100	1000	990	ND (0.0026)	ND (0.0028)	0.112 J (0.11)	0.0222 J (0.0017)	ND (0.0016)	ND (0.002)	0.02132 J (0.0019)
Semivolatile Organic Compounds											
Naphthalene	66	77	25	25	ND (2.5)	0.96 J (1.3)	0.4 (0.038)	0.067 (0.037)	0.051 (0.039)	0.086 (0.038)	0.14 (0.037)

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 No concentrations exceed the NonRes DC Surface MSC (0-2 ft) or NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS ≤ 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

J - Estimated Concentration

FD - Field Duplicate

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB07 136N-SB07-2.5-3.0 2.5 - 3.0 5/23/2024 Northern Excavation	136N-SB08 136N-SB08-2.0-2.5 2.0 - 2.5 5/23/2024 Northern Excavation	136N-SB09 136N-SB09-3.0-3.5 3.0 - 3.5 5/23/2024 Northern Excavation	136N-SB10 136N-SB10-2.0-2.5 2.0 - 2.5 5/23/2024 Northern Excavation	136N-SB11 136N-SB11-2.0-2.5 2.0 - 2.5 5/24/2024 Northern Excavation	136N-SB12 136N-SB12-3.0-3.5 3.0 - 3.5 5/24/2024 Northern Excavation	136N-SB13 136N-SB13-1.0-1.5 1.0 - 1.5 5/24/2024 Central Excavation
Volatile Organic Compounds											
Benzene	280	330	0.5	0.13	<u>0.75 (0.03)</u>	ND (0.00051)	0.0029 (0.0005)	ND (0.00049)	0.00045 J (0.0005)	0.00093 (0.0006)	0.00034 J (0.00052)
Cumene	10000	10000	2500	2500	7 (0.061)	ND (0.001)	0.012 (0.001)	ND (0.00098)	ND (0.001)	ND (0.0012)	0.0012 (0.001)
Ethyl Benzene	880	1000	70	46	2.7 (0.061)	ND (0.001)	0.0025 (0.001)	ND (0.00098)	ND (0.001)	ND (0.0012)	ND (0.001)
Methyl tert-butyl ether	8500	9800	2	1.4	ND (0.12)	ND (0.002)	ND (0.002)	ND (0.002)	ND (0.002)	ND (0.0024)	ND (0.0021)
Toluene	10000	10000	100	44	0.31 (0.061)	ND (0.001)	0.0011 (0.001)	ND (0.00098)	ND (0.001)	ND (0.0012)	ND (0.001)
1,2,4-Trimethylbenzene	4700	5400	300	300	19 (1.2)	ND (0.002)	0.032 (0.002)	ND (0.002)	ND (0.002)	ND (0.0024)	0.00038 J (0.0021)
1,3,5-Trimethylbenzene	4700	5400	93	93	8 (0.12)	ND (0.002)	0.017 (0.002)	ND (0.002)	ND (0.002)	ND (0.0024)	ND (0.0021)
Xylenes (total)	7900	9100	1000	990	55.4 J (1.2)	ND (0.002)	0.0057 J (0.002)	ND (0.002)	ND (0.002)	ND (0.0024)	ND (0.0021)
Semivolatile Organic Compounds											
Naphthalene	66	77	25	25	0.29 (0.039)	0.32 (0.036)	0.27 (0.039)	0.12 J (0.19)	0.16 (0.039)	0.16 (0.038)	1.5 (1.2)

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 No concentrations exceed the NonRes DC Surface MSC (0-2 ft) or NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

J - Estimated Concentration

FD - Field Duplicate

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB14 136N-SB14-2.5-3.0 2.5 - 3.0 5/23/2024 Central Excavation	136N-SB15 136N-SB15-1.0-1.5 1.0 - 1.5 5/24/2024 Central Excavation	136N-SB16 136N-SB16-2.0-2.5 2.0 - 2.5 5/24/2024 Central Excavation	136N-SB17 136N-SB17-1.5-2.0 1.5 - 2.0 5/24/2024 Central Excavation	136N-SB18 136N-SB18-1.0-1.5 1.0 - 1.5 5/24/2024 Central Excavation	136N-SB19 136N-SB19-2.5-3.0 2.5 - 3.0 5/23/2024 Central Excavation	136N-SB20 136N-SB20-2.5-3.0 2.5 - 3.0 5/23/2024 Central Excavation
Volatile Organic Compounds											
Benzene	280	330	0.5	0.13	0.018 (0.00046)	<u>84 (0.14)</u>	0.0028 (0.00056)	0.00042 J (0.00049)	0.00024 J (0.0005)	ND (0.00048)	0.00046 (0.00046)
Cumene	10000	10000	2500	2500	0.0018 (0.00092)	93 (0.56)	0.0023 (0.0011)	ND (0.00098)	ND (0.001)	ND (0.00095)	ND (0.00093)
Ethyl Benzene	880	1000	70	46	0.00058 J (0.00092)	13 (0.28)	0.00032 J (0.0011)	ND (0.00098)	ND (0.001)	ND (0.00095)	ND (0.00093)
Methyl tert-butyl ether	8500	9800	2	1.4	ND (0.0018)	ND (0.56)	ND (0.0022)	ND (0.002)	ND (0.002)	ND (0.0019)	ND (0.0018)
Toluene	10000	10000	100	44	ND (0.00092)	38 (0.28)	0.0017 (0.0011)	ND (0.00098)	ND (0.001)	ND (0.00095)	ND (0.00093)
1,2,4-Trimethylbenzene	4700	5400	300	300	0.00045 J (0.0018)	100 (1.1)	0.0026 (0.0022)	ND (0.002)	ND (0.002)	ND (0.0019)	ND (0.0018)
1,3,5-Trimethylbenzene	4700	5400	93	93	ND (0.0018)	33 (0.56)	0.00092 J (0.0022)	ND (0.002)	ND (0.002)	ND (0.0019)	ND (0.0018)
Xylenes (total)	7900	9100	1000	990	0.00233 J (0.0018)	174 J (0.56)	0.0038 J (0.0022)	ND (0.002)	ND (0.002)	ND (0.0019)	ND (0.0018)
Semivolatile Organic Compounds											
Naphthalene	66	77	25	25	0.23 (0.038)	7.4 (0.038)	0.66 J (0.77)	0.16 (0.038)	0.18 (0.038)	ND (0.19)	0.12 (0.038)

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 No concentrations exceed the NonRes DC Surface MSC (0-2 ft) or NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

J - Estimated Concentration

FD - Field Duplicate

Table 2 Summary of Additional Soil Characterizton Analytical Results 136 Naphtha Release Area Bellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	MSCs for	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB15 136N-SB15R-4.0-4.5 4.0 - 4.5 10/28/2024	136N-SB21 136N-SB21-1.5-2.0 1.5 - 2.0 10/28/2024	136N-SB21 136N-SB21-3.0-3.5 3.0 - 3.5 10/28/2024	136N-SB22 136N-SB22-1.5-2.0 1.5 - 2.0 10/28/2024	136N-SB22 136N-SB22-4.0-4.5 4.0 - 4.5 10/28/2024	136N-SB23 136N-SB23-1.5-2.0 1.5 - 2.0 10/28/2024
olatile Organic Compounds										
Benzene	280	330	0.5	0.13	0.0013 (0.00079)	0.0007 J (0.0008)	0.059 (0.031)	<u>320 (2.6)</u>	<u>140 (1.3)</u>	<u>1.6 (0.053)</u>
Toluene	10000	10000	100	44	ND (0.0016)	0.00088 J (0.0016)	0.078 (0.063)	<u>140 (5.3)</u>	22 (2.7)	0.93 (0.11)
atori										

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Grey-shaded concentrations indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

Table 2Summary of Additional Soil Characterizton Analytical Results136 Naphtha Release AreaBellwether District Holdings, LLC, Philadelphia, PA

	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB23 136N-SB23-3.0-3.5 3.0 - 3.5 10/28/2024	136N-SB24 136N-SB24-1.0-1.5 1.0 - 1.5 10/28/2024	136N-SB24 136N-SB24-4.0-4.5 4.0 - 4.5 10/28/2024	136N-SB24 136N-SB24-4.0-4.5D 4.0 - 4.5 10/28/2024 Field Duplicate	136N-SB25 136N-SB25-1.0-1.5 1.0 - 1.5 10/28/2024	136N-SB25 136N-SB25-4.0-4.5 4.0 - 4.5 10/28/2024
Volatile Organic Compounds										
Benzene	280	330	0.5	0.13	<u>0.88 (0.042)</u>	<u>1.3 (0.058)</u>	0.0036 (0.00057)	0.00066 J (0.00099)	0.064 (0.036)	0.12 (0.033)
Toluene	10000	10000	100	44	1.1 (0.083)	0.69 (0.12)	ND (0.0011)	ND (0.002)	0.2 (0.073)	0.09 (0.067)

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Grey-shaded concentrations indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB25 136N-SB25-4.0-4.5D 4.0 - 4.5 10/28/2024 Field Duplicate	136N-SB26 136N-SB26-0.5-1.0 0.5 - 1.0 10/28/2024	136N-SB26 136N-SB26-0.5-1.0D 0.5 - 1.0 10/28/2024 Field Duplicate	136N-SB26 136N-SB26-4.0-4.5 4.0 - 4.5 10/28/2024	136N-SB28 136N-SB28-1.5-2.0 1.5 - 2.0 10/28/2024	136N-SB28 136N-SB28-2.5-3.0 2.5 - 3.0 10/28/2024
olatile Organic Compounds										
Benzene	280	330	0.5	0.13	0.096 (0.035)	0.0016 (0.00066)	0.0014 (0.00078)	0.0026 (0.00051)	<u>16 (0.12)</u>	<u>790 (2.9)</u>
Toluene	10000	10000	100	44	0.042 J (0.071)	ND (0.0013)	ND (0.0016)	0.0053 (0.001)	0.14 (0.049)	7.9 (5.8)

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Grey-shaded concentrations indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

Table 2Summary of Additional Soil Characterizton Analytical Results136 Naphtha Release AreaBellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB29 136N-SB29-1.0-1.5 1.0 - 1.5 10/28/2024	136N-SB29 136N-SB29-3.0-3.5 3.0 - 3.5 10/28/2024	136N-SB30 136N-SB30-1.0-1.5 1.0 - 1.5 10/28/2024	136N-SB30 136N-SB30-2.0-2.5 2.0 - 2.5 10/28/2024	136N-SB31 136N-SB31-1.0-1.5 1.0 - 1.5 10/28/2024	136N-SB31 136N-SB31-2.5-3.0 2.5 - 3.0 10/28/2024
/olatile Organic Compounds										
Benzene	280	330	0.5	0.13	<u>7.4 (0.077)</u>	<u>2.9 (0.047)</u>	<u>2 (0.058)</u>	<u>1 (0.058)</u>	<u>12 (0.48)</u>	<u>0.62 (0.04)</u>
Toluene	10000	10000	100	44	0.88 (0.15)	3.8 (0.095)	1.6 (0.12)	1 (0.12)	5.4 (0.97)	1 (0.08)
lotos:										

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Grey-shaded concentrations indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft).

3 Underlined concentrations exceed the Non-Residential Used Aquifer

(TDS \leq 2500) Soil-to-GW MSC.

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

J - Estimated Concentration

Terraphase Engineering Inc.

Table 2 Summary of Additional Soil Characterizton Analytical Results 136 Naphtha Release Area Bellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID Collection Depth (ft bgs) Sample Date Comments	Non-Residential Direct Contact MSCs for Surface Soil (0-2 ft)	Non-Residential Direct Contact MSCs for Subsurface Soil (2-15 ft)	Non-Residential Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	136N-SB32 136N-SB32-0.5-1.0 0.5 - 1.0 10/28/2024	136N-SB32 136N-SB32-2.5-3.0 2.5 - 3.0 10/28/2024	136N-SB35 136N-SB35-1.5-2.0 1.5 - 2.0 10/28/2024	136N-SB35 136N-SB35-3.0-3.5 3.0 - 3.5 10/28/2024	AOI7-BH-08-2019 AOI7-BH-08-2019R-2.0-2.5 2.0 - 2.5 10/28/2024
Volatile Organic Compounds									
Benzene	280	330	0.5	0.13	ND (0.055)	<u>0.71 (0.041)</u>	<u>1.5 (0.055)</u>	<u>1.5 (0.036)</u>	<u>26 (0.098)</u>
Toluene	10000	10000	100	44	ND (0.11)	0.16 (0.081)	0.36 (0.11)	0.44 (0.071)	0.56 (0.2)

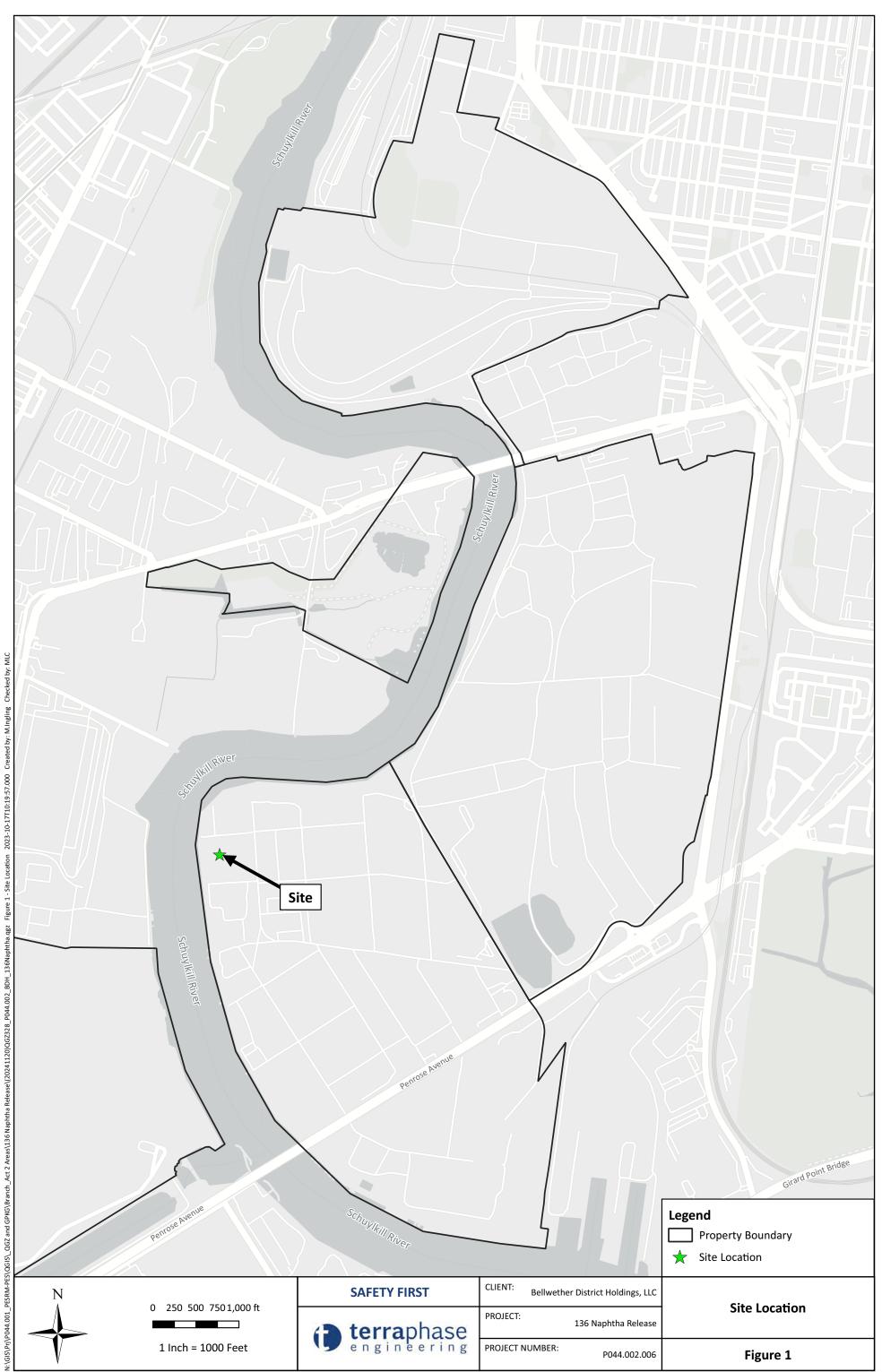
Notes:

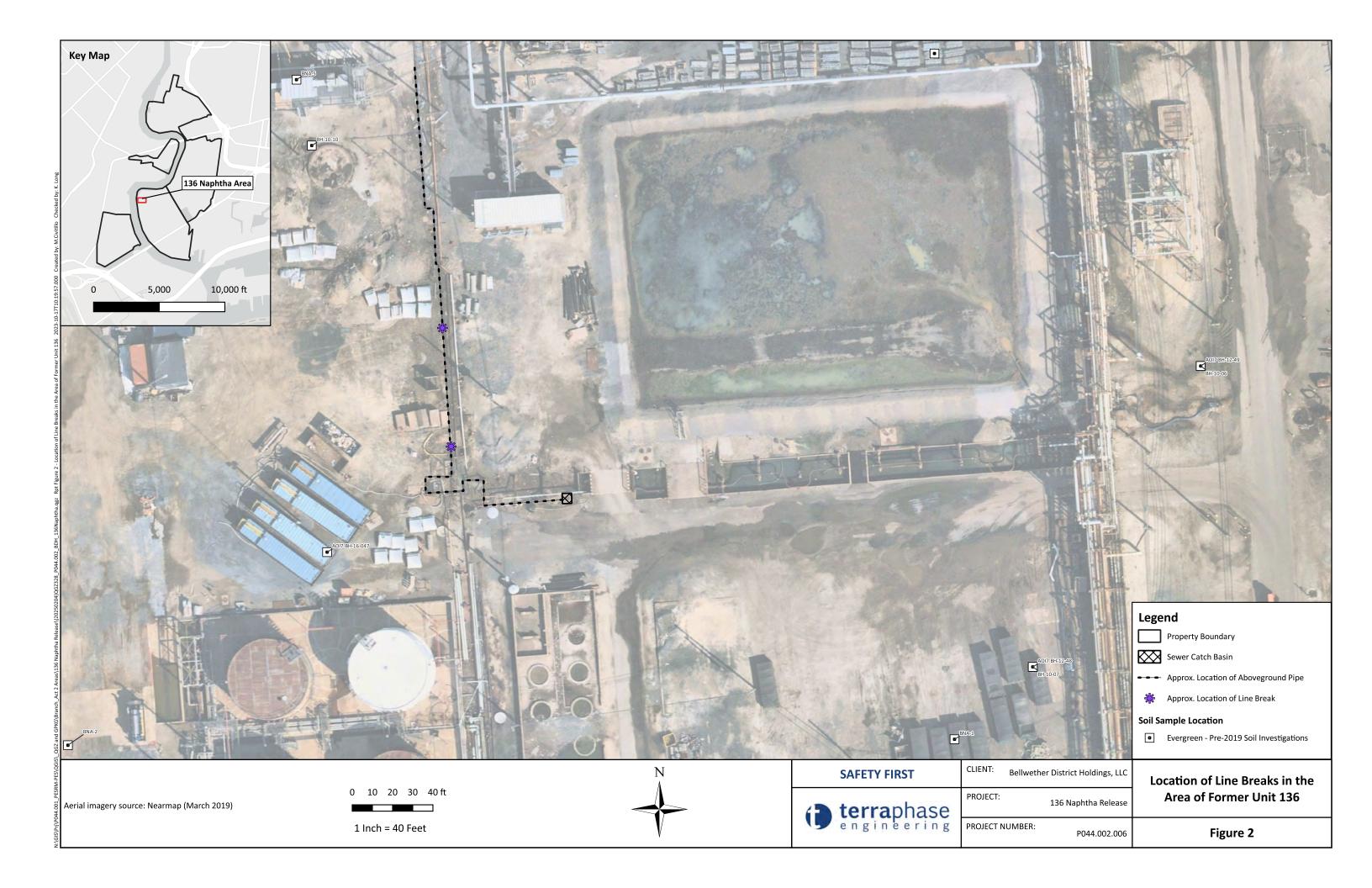
1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

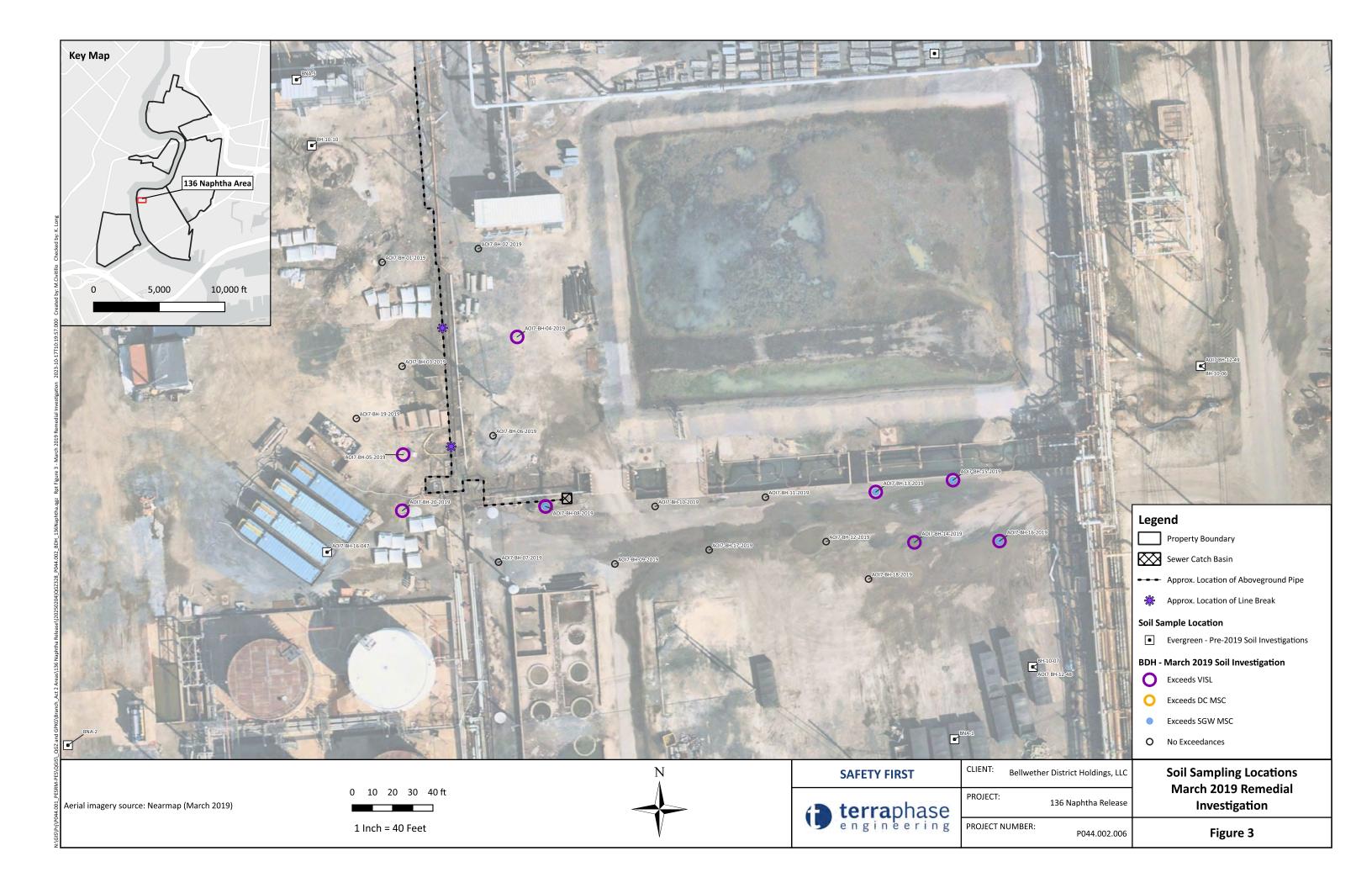
2 Grey-shaded concentrations indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft).

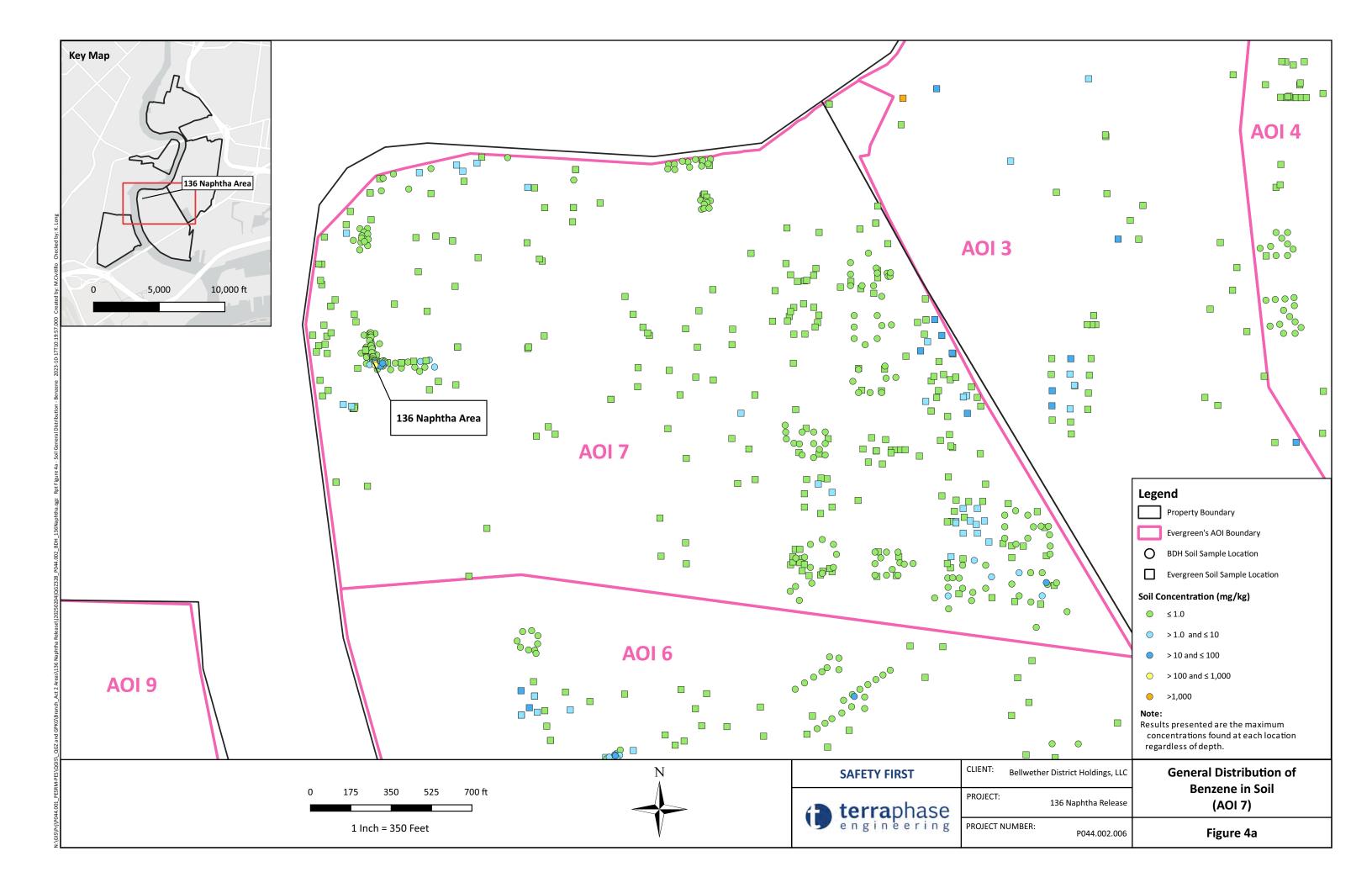
3 Underlined concentrations exceed the Non-Residential Used Aquifer

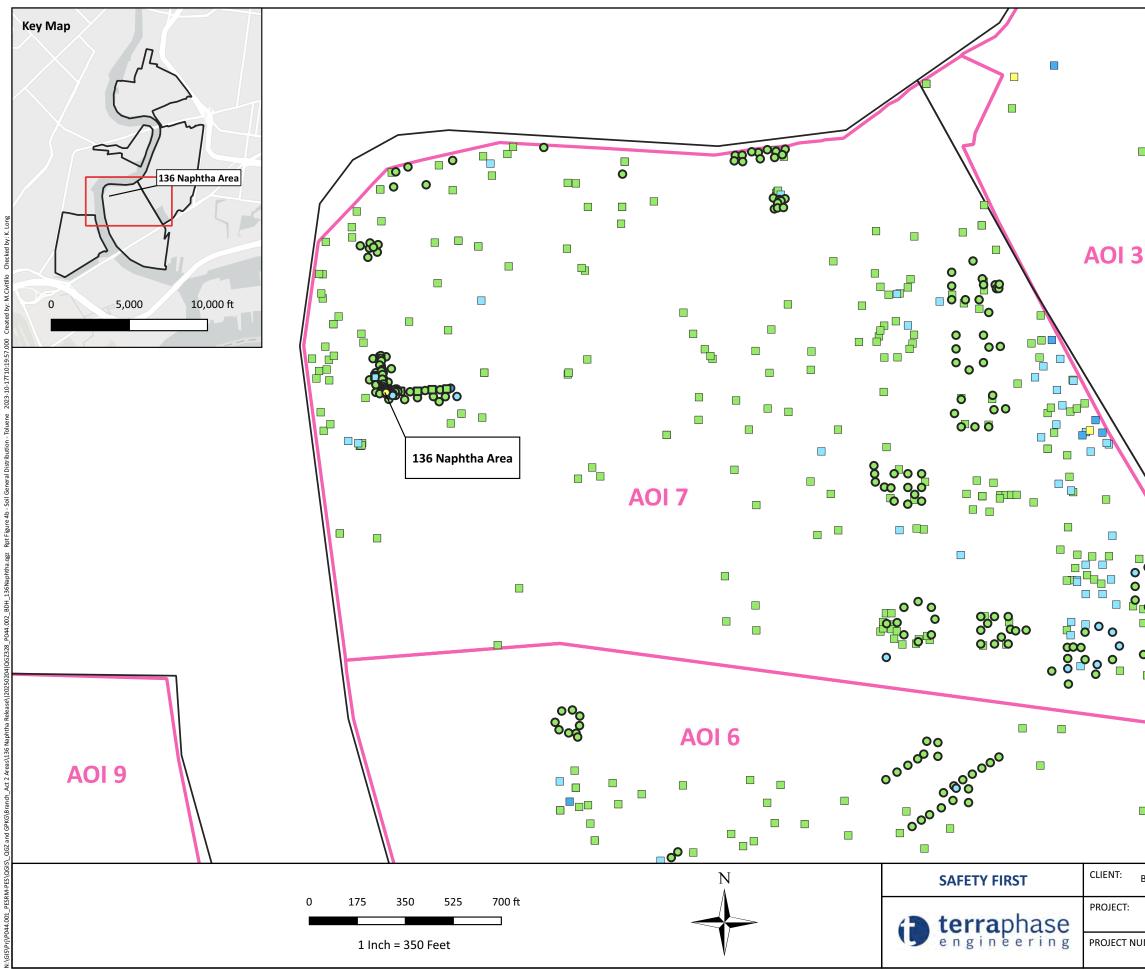
(TDS \leq 2500) Soil-to-GW MSC.

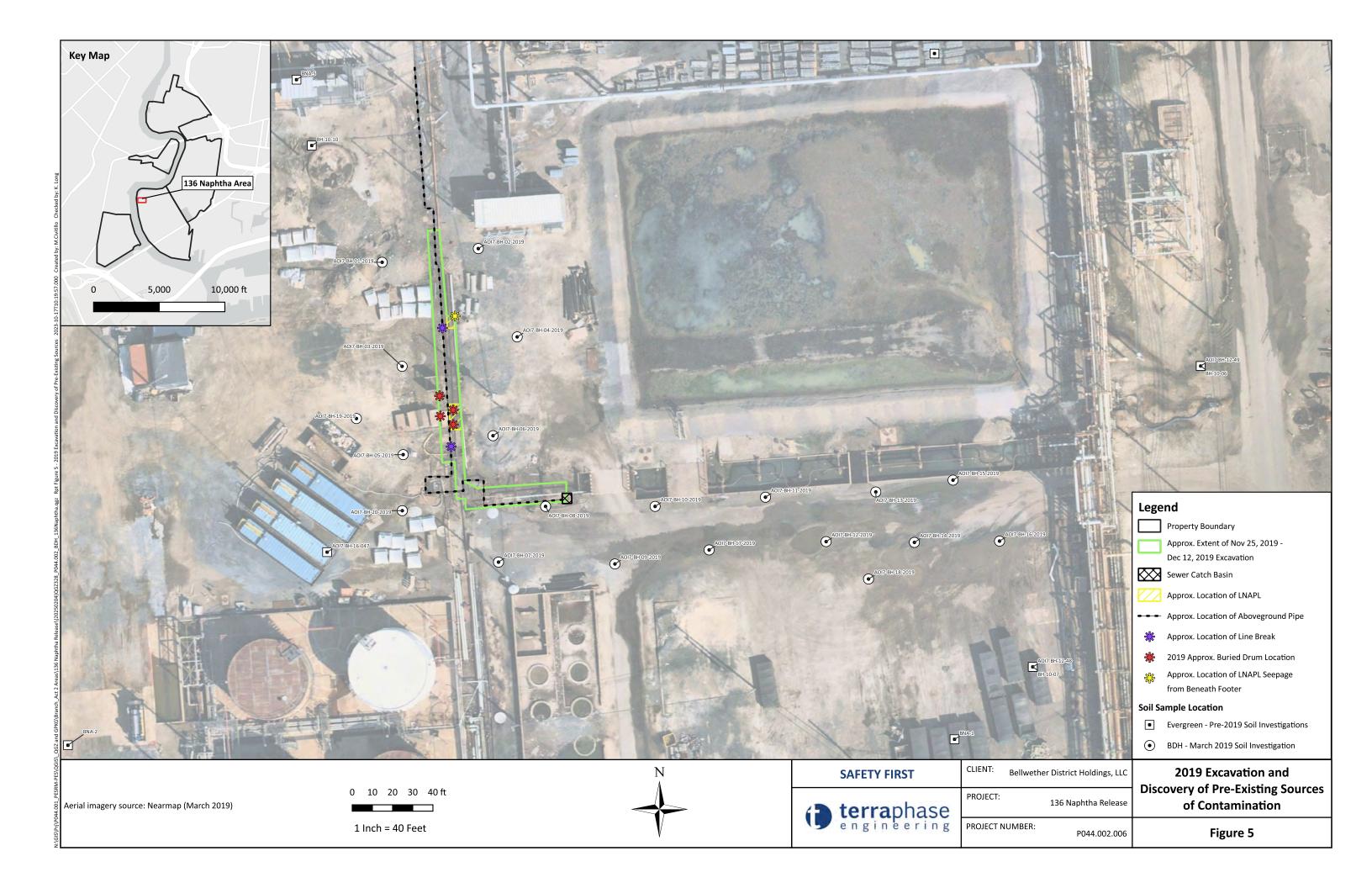

4 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

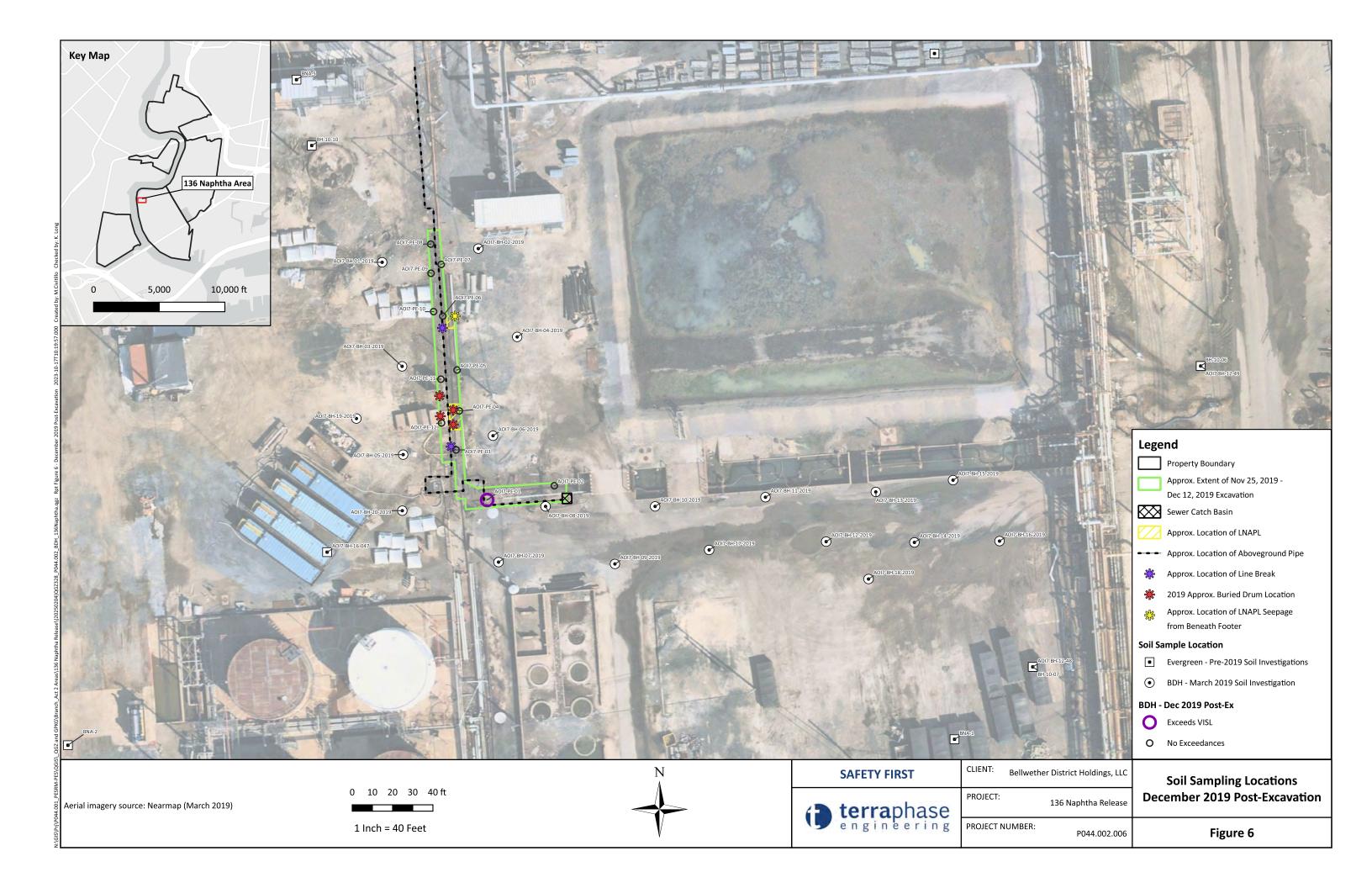

Abbreviations:

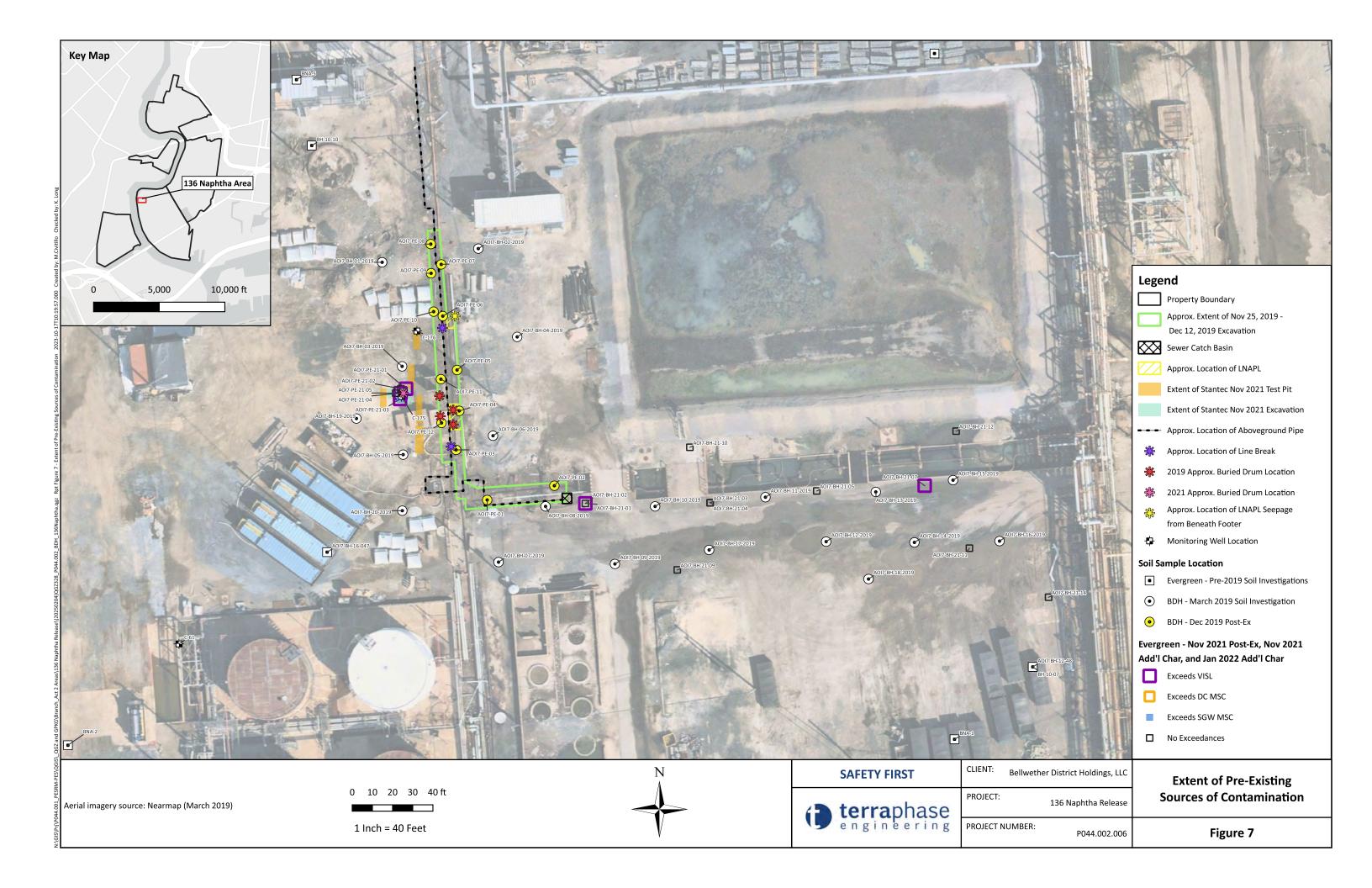

ND - Not Detected

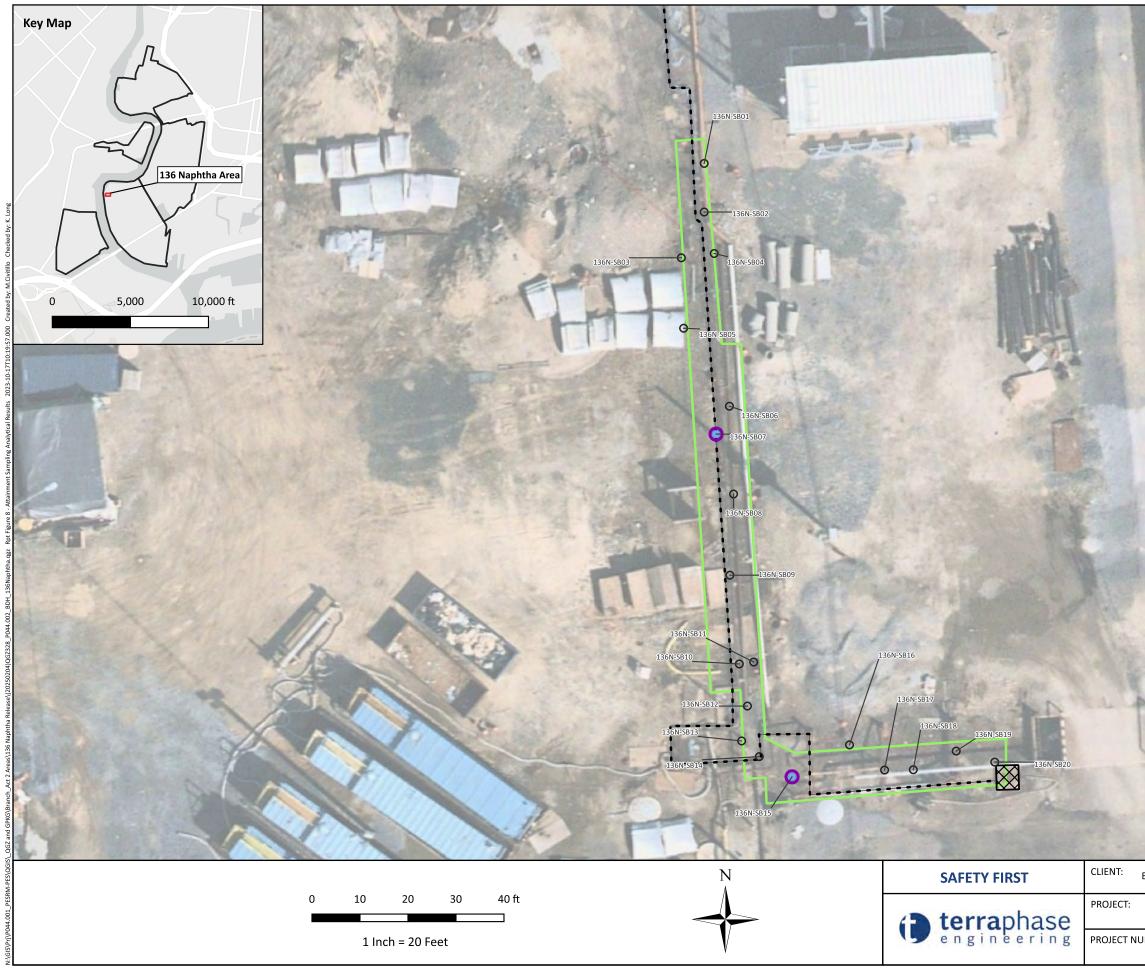

Figures


- 1 Site Location Map
- 2 Location of Line Breaks in the Area of Former Unit 136
- 3 Soil Sampling Locations March 2019 Remedial Investigation
- 4a General Distribution of Benzene in Soil (AOI 7)
- 4b General Distribution of Toluene in Soil (AOI 7)
- 5 2019 Excavation and Discovery of Pre-Existing Sources of Contamination
- 6 Soil Sampling Locations December 2019 Post-Excavation
- 7 Extent of Pre-Existing Sources of Contamination
- 8 Soil Attainment Sampling Analytical Results
- 9 Additional Soil Characterization Soil Sampling Locations
- 10 Soil Analytical Results

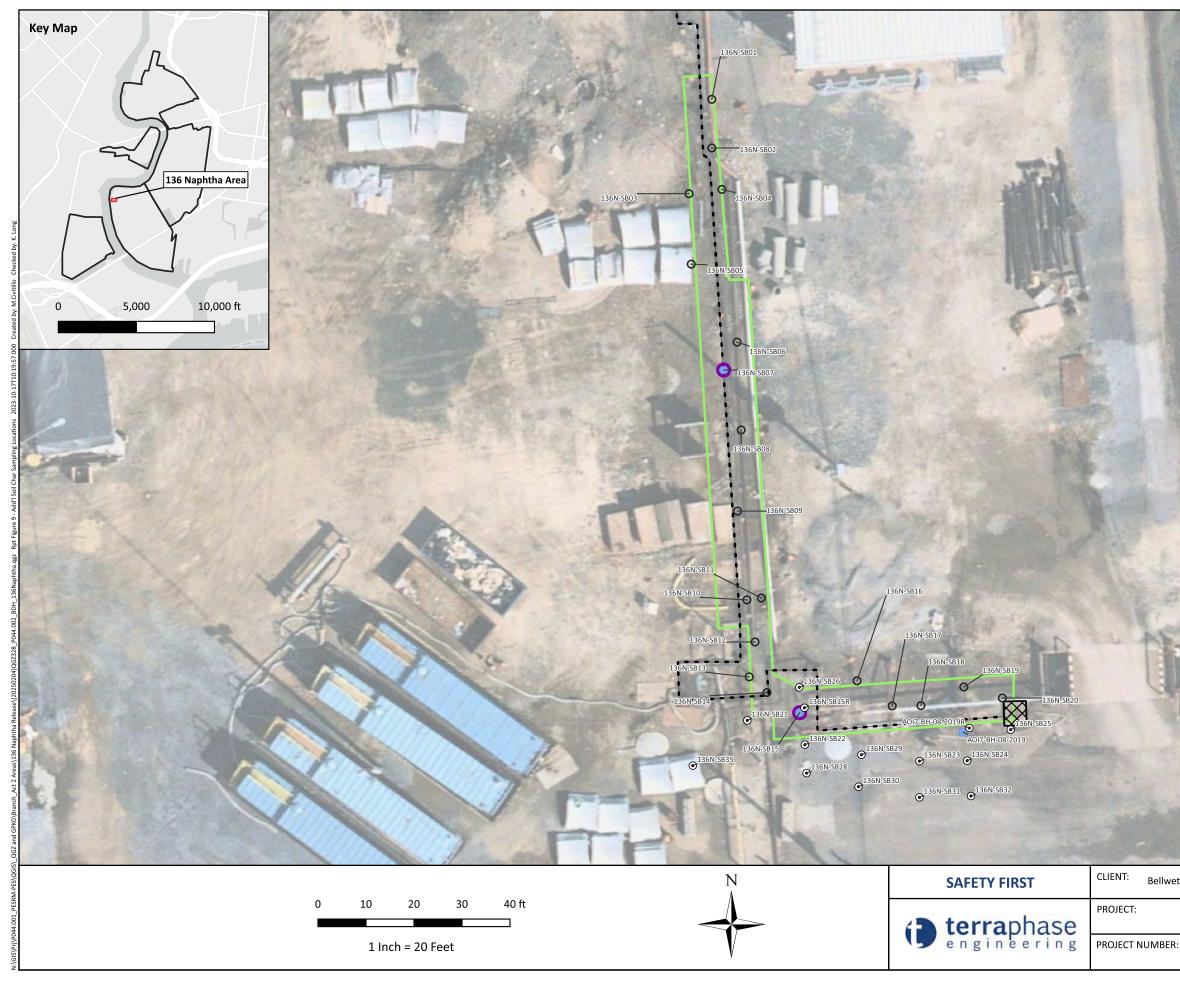








•	
	AOI 4
	P
3	
	0000 0000
_	- 00
	Legend
	Property Boundary
	Evergreen's AOI Boundary
	O BDH Soil Sample Location
	Evergreen Soil Sample Location
•	Soil Concentration (mg/kg)
0	● ≤ 1.0
	> 1.0 and ≤ 10
	> 10 and ≤ 100
	○ > 100
• •	Note: Results presented are the maximum concentrations found at each location regardless of depth.
Bellwether District Holdings, LLC	General Distribution of
136 Naphtha Release	Toluene in Soil (AOI 7)
IUMBER: P044.002.006	Figure 4b



	Legend
	Property Boundary
	Approx. Extent of Nov 25, 2019 -
No. Company	Dec 12, 2019 Excavation
10.000	Sewer Catch Basin
NR.	Approx. Location of Aboveground Pipe
AL	BDH Soil Sampling Location
1	Exceeds VISL
and the second of	Exceeds DC MSC
000	
	Exceeds SGW MSC
A Company	O No Exceedances
	Abbreviations DC Direct Contact
	MSC Medium Specific Concentration SGW Soil-to-Groundwater
the second second	VISL Vapor Intrusion Screening Level
	Notes: Sample locations symbolizing NonRes DC exceedances indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft). Aerial imagery source: Nearmap (March 2019)
Bellwether District Holdings, LLC	Soil Attainment Sampling
136 Naphtha Release	Analytical Results
JMBER: P044.002.006	Figure 8

L	ρ	σ	ρ	n	d
-	-	ъ	-	•••	-

- Property Boundary Approx. Extent of Nov 25, 2019 -Dec 12, 2019 Excavation
- Sewer Catch Basin
- ---- Approx. Location of Aboveground Pipe

BDH Soil Sampling Location

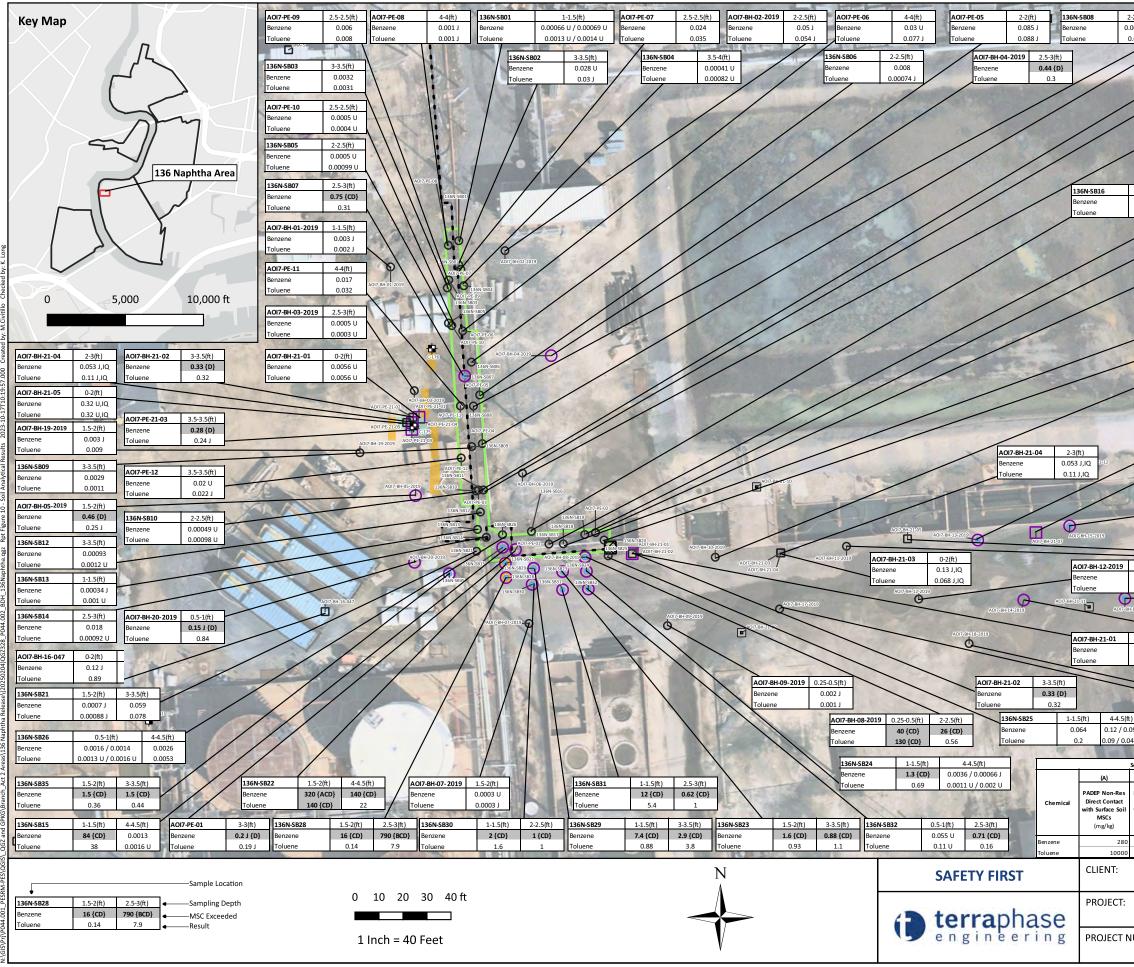
- Exceeds VISL
- Exceeds DC MSC
- Exceeds SGW MSC
- O No Exceedances
- Oct 2024 Add'l Char

Abbreviations

DC -- Direct Contact MSC -- Medium Specific Concentration SGW -- Soil-to-Groundwater VISL -- Vapor Intrusion Screening Level

Notes:

Sample locations symbolizing NonRes DC exceedances indicate that either a surface sample exceeds the NonRes DC Surface MSC (0-2 ft) or a subsurface sample exceeds the NonRes DC Subsurface MSC (2-15 ft). Aerial imagery source: Nearmap (March 2019)


Bellwether District Holdings, LLC

136 Naphtha Release

Additional Soil Characterization Soil Sampling Locations

P044.002.006

Figure 9

2-2.5(ft)	AOI7-PE-04	2.5-2.5(ft)	-	
0.00051 U	Benzene	0.032 J	1929	
0.001 U	Toluene	0.033 J	1000	
//	AOI7-PE-03	3-3(ft)		
/	Benzene	0.025	APA	THE PART IN
	Toluene	0.027	125	
//	136N-SB11	2-2.5(ft)	Lege	end
	Benzene Toluene	0.00045 J 0.001 U		
1		and search the state of the		Property Boundar
	AOI7-BH-06-2019 Benzene	0.5-1(ft) 0.001 J		Approx. Extent of
	Toluene	0.001 J		2019 - Dec 12, 20
		PAGE		2019 - Dec 12, 20
1	136N-SB17	1.5-2(ft)		Sewer Catch Basin
2-2.5(ft) 0.0028	Benzene	0.00042 J		F
0.0017	Toluene	0.00098 U		Extent of Stantec I
	136N-SB19	2.5-3(ft)		Extent of Stantec I
	Benzene	0.00048 U		
	Toluene	0.00095 U		Approx. Location of
	AOI7-PE-02 Benzene	4.5-4.5(ft)	_	
	Toluene	0.0006 U 0.0004 U	•	Monitoring Well L
	136N-SB18	1-1.5(ft)		ail Comula Lagotian
	Benzene	0.00024 J	вон з	oil Sample Location
	Toluene	0.001 U	Ο	Exceeds VISL
	136N-SB20 Benzene	2.5-3(ft)		
	Toluene	0.00046 0.00093 U	0	Exceeds DC MSC
	AOI7-BH-10-2019	2-2.5(ft)	•	Exceeds SGW MSC
/	Benzene	0.021 U		
	Toluene	0.2 J	0	No Exceedances
	AOI7-BH-13-2019 Benzene	1.5-2(ft) 1.2 {CD}	Evergr	een Soil Sample Lo
2	Toluene	1		Exceeds VISL
/	AOI7-BH-21-07	0-2(ft)		LACEEUS VISL
//	Benzene Toluene	0.14 J,IQ {D}		Exceeds DC MSC
/	AOI7-BH-15-2019	1-1.5(ft)		
5.000	Benzene	8.3 {CD}		Exceeds SGW MSC
1	Toluene	12		No Exceedances
and a	AOI7-BH-21-05	0-2(ft)	_	
The .	Benzene Toluene	0.32 U,IQ 0.32 U,IQ		Not Analyzed for E
1 2	AOI7-BH-11-2019	1.5-2(ft)	Qualifie	
1-1.5(ft) 0.068 J	Benzene	0.02 U		nated Concentration
0.024 J	Toluene	0.031 J		Detected
	AOI7-BH-16-2019	1-1.5(ft)		
8H-16-2019	Benzene Toluene	1.7 {CD} 4.3	Abbrev	iations irect Contact
	AOI7-BH-14-2019	1-1.5(ft)		Medium Specific Conce
0-2(ft)	Benzene	0.19 J {D}		Soil-to-Groundwater
0.0056 U 0.0056 U	Toluene	0.2 J	VISL V	/apor Intrusion Screeni
1	AOI7-BH-18-2019	2.5-3(ft)	Exceed	ance Codes:
	Benzene Toluene	0.002 J 0.002 J		ater than NonRes Surfa
10052	AOI7-BH-17-2019	1-1.5(ft)		ater than NonRes Subs ater than NonRes Used
(ft)	Benzene	0.011		ater than NonRes VISL
0.096	Toluene	0.004 J		
	BH-12-48		Notes: All cond	centrations are present
Soil Screening Le	vels	N COLORADORY	Results	exceeding the MSCs/V
{B}	{C}	{D}		locations symbolizing ate that either a surface
PADEP Non-Res	PADEP Non-Res	PADEP Non-Res		urface MSC (0-2 ft) or a
Direct Contact with Subsurface	Used Aquifer (TDS < 2500)	Used Aquifer Vapor Intrusion	the N	onRes DC Subsurface N
Soil MSCs (mg/kg)	Soil-to-GW MSCs (mg/kg)	Screening Levels (mg/kg)		ances identified only re
0 330		0.13		ts for benzene and tolu 36 Naphtha Area > MSC
0 1000		44		nagery source: Nearma
Bellwethe	er District Ho	ldings, LLC		
				Soil Analyt
:	126 Nombe	ha Poloasa		Jui Analyt
	136 Napht			
NUMBER:				
	P04	4.002.006		Figu

ry f Nov 25, 019 Excavation in Nov 2021 Test Pit Nov 2021 Excavation n of Aboveground Pipe Location n ocation C Benzene or Toluene

- centration ning Level
- face DC MSC surface DC MSC ed Aquifer SGW MSC

ted in mg/kg. VISLs are shaded.

- NonRes DC exceedances ace sample exceeds the NonRes r a subsurface sample exceeds MSC (2-15 ft).
- eflect sampling luene - constituents detected in SCs during BDH sampling.
- ap (March 2019)

tical Results

ıre 10

Appendix A

Notification Documentation

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF ENVIRONMENTAL CLEANUP AND BROWNFIELDS

For DEP Use Only
PF #
Rem ID #

NOTICE OF INTENT TO REMEDIATE

Act 1995-2 requires four general information items to be included in the NIR: the general location, listing of contaminants, intended use of property, and proposed remediation measures. In addition, indicate the standard(s) to be obtained (if known) and attach a scaled site map (if available).

Property Name Former Philadelphia Energy Solutions Re	finery
Former Name(s) / AKA	
Address / Location 3144 West Passyunk Avenue	
City Philadelphia	Zip Code <u>19153</u>
Municipality(s) CIty of Philadelphia	County(ies) Philadelphia
Latitude <u>39</u> ^o (deg). <u>54</u> ' (min) <u>28</u> " (sec)	Longitude <u>75</u> ° (deg). <u>12</u> ' (min) <u>49</u> " (sec)
Horizontal Collection Method Geographic Information Sys	stems
Horizontal Reference Datum <u>NAD83</u> Released	Reference Point <u>Point Where Substance is</u>
Wish to participate in the DEP/EPA MOA. <u>landrecycling@pa.gov</u> for details.	Contact the Land Recycling Program Manager at
EPA ID#, if known	
DEP ID#(s), if known (i.e., eFACTS site ID#, storage tank facility ID#, water qua	ality permit #, watershed permit, air quality permit #, etc.)
Date Release Occurred (if known) <u>2/22/2019</u>	

Provide a brief description of the site contamination in plain language (e.g. fuel oil spill, historical chemical industrial area contamination), the names of any know primary contaminants to be addressed, and the intended future use of the property.

A release of light naphtha from overhead piping lines associated with Unit 137 occurred on 2/22/2019 near the Unit 136 area. Interim remediation measures are described in the section below. The compounds of concern in soil area are gasoline constituents. The future use of the site is a non-residential development for commercial and industrial use.

Provide a general description of proposed remediation measures.

Philadelphia Energy Solutions Refining and Marketing, LLC is submitting this NIR to address remediation of a discharge of light naphtha which occurred at a portion of the site formerly designated as AOI 7 in prior Land Recycling Program submissions by Evergreen Resources Management. The remediation measures consisted of recovery of release product via vacuum truck and excavation and disposal of impacted soil.

2610-FM-BECB0010 6/2014

Remediation Standard(s) planned (if known at this time):

 Unknown at this time Background Contaminants: 	☐ Soil ☐ Soil	Groundwater
Statewide Health - Residential Contaminants:	🗌 Soil	Groundwater
Statewide Health – Non-Residential Contaminants: unleaded gasoline	🛛 Soil	Groundwater
Site Specific Contaminants:	🗌 Soil	Groundwater
Special Industrial Area* Contaminants:	🗌 Soil	Groundwater

*NOTE: Specific standard or Special Industrial Area require a 30-day municipal comment period

Remediator / Property Owner / Consultant. Complete the form below for <u>each</u> recipient obtaining a release of liability upon approval of the final report. Attach additional sheets as necessary.

Remediator	
Contact Person/Title Anne Garr/Assistant Secretary	eFACTS Client ID*
Relationship to Site <u>Remediator</u>	Client Type*
(e.g. owner, remediator, participant in cleanup, consultant	, etc.)
Phone Number <u>312-283-4469</u>	Email Address agarr@hilcoglobal.com
Company Name <u>Philadelphia Energy Solutions Refinir</u> Marketing LLC	<u>g &</u> EIN or Federal ID # <u>611689574</u>
Address (street, city, state, zip) 111 South Wacker Drive	Suite 3000, Chicago, IL 6060
Property Owner	
Contact Person/Title Anne Garr/Assistant Secretary	eFACTS Client ID*
Relationship to Site Owner	Client Type*
(e.g. owner, remediator, participant in cleanup, consultant	, etc.)
Phone Number <u>312-283-4469</u>	Email Address agarr@hilcoglobal.com
Company Name <u>Philadelphia Energy Solutions Refinir</u> Marketing LLC	<u>g &</u> EIN or Federal ID # <u>611689574</u>
Address (street, city, state, zip) 111 South Wacker Drive	Suite 3000, Chicago, IL 60606
Consultant	
Contact Person/Title Jeffrey Smith, PG/Associate	eFACTS Client ID* <u>303097</u>
Relationship to Site <u>Consultant</u> (e.g. owner, remediator, participant in cleanup, consultant	, etc.) Client Type* <u>Other (Non-Government)</u>
Phone Number 215-845-8915	Email Address JSmith@langan.com
Company Name Langan Engineering and Environme Svc.	ental EIN or Federal ID # <u>46-1134493</u>
Address (street, city, state, zip) <u>1818 Market Street, Phila</u>	delphia, PA 19108
*Include aFACTS Client ID (if known) "Client Types" ha	our.
*Include eFACTS Client ID (if known) – "Client Types" be Association/Organization Limited L	ability company Partnership-General
	ability Partnership Partnership-Limited
County Municipa	ity School District
	nsylvania Government Sole Proprietorship
	on-Government) State Agency
Individual Pennsylv	ania Corporation
Preparer of Notice of Intent to Remediate	
Name Charlene Drake	Title Associate
Phone Number 2158523060	
	Email Address <u>cdrake@langan.com</u>

Services, Inc

Address (street, city, state, zip) 1818 Market Street, Philadelphia, PA 19108

Notice of an Intent to Remediate to an Environmental Standard and Notification of Submittal of a Final Remediation Report (Section 304(n)(2)(i)) (Sections 302(e)(1)(ii), 303(h)(1)(ii), 304(n)(1)(i), and 305(c)(1))

Pursuant to the Land Recycling and Environmental Remediation Standards Act, the act of May 19, 1995, P.L. 4, No. 1995-2, notice is hereby given that Philadelphia Energy Solutions Refining and Marketing LLC has submitted to the Pennsylvania Department of Environmental Protection a Notice of Intent to Remediate a site located at 3144 West Passyunk Avenue, Philadelphia, PA. This Notice of Intent to Remediate states the site is the Former Philadelphia Energy Solutions Refinery. The portion of the site has been found to be contaminated with petroleum products which has contaminated soil on the site. Philadelphia Energy Solutions Refining and Marketing LLC has indicated that the remediation measures consisted of soil excavation. The site will be used for non-residential commercial/industrial use.

Notice is hereby given that Philadelphia Energy Solutions Refining and Marketing LLC will submit a Final Report to the Pennsylvania Department of Environmental Protection, Southeast Regional Office, to demonstrate attainment of the Statewide Health Standards for soil at a portion of the Site located at 3144 Passyunk Avenue, Philadelphia, Pennsylvania. The remediation measures taken include soil excavation and removal and demonstrate attainment of the Statewide Health Standards established under the Land Recycling and Environmental Remediation Standards Act.

This notice is made under the provision of the Land Recycling and Environmental Remediation Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

The Philadelphia Inquirer

001 MARKET STREET, SUITE 300, PHILADELPHIA, PA 19107

Affidavit of Publication

On Behalf of: LANGAN 1818 Market St Suite 3300 PHILADELPHIA, PA 19103

STATE OF PENNSYLVANIA COUNTY OF PHILADELPHIA:

Before the undersigned authority personally appeared the undersigned who, on oath represented a and say: that I am an employee of The Philadelphia Inquirer, LLC, and am authorized to make this affidavit of publication, and being duly sworn, I depose and says

1. The Philadelphia Inquirer, LLC is the publisher of the Philadelphia Inquirer, with its headquarters at 801 Market Street, Suite 300, Philadelphia, Pennsylvania 19107.

2. The Philadelphia Inquirer is a newspaper that which was established in in the year 1829, since which date said daily newspaper has been continuously published and distributed daily in the City of Philadelphia, count and state aforesaid.

3. The printed notice or publication attached hereto set forth on attached hereto was published in all regular print editions of

The Philadelphia Inquirer on

Legal Notices

as published in Inquirer Legals in the issue(s) of:

6/3/2021

4. Under oath, I state that the following is true and correct, and that neither I nor The Philadelphia Inquirer, LLC have any is interest in the subject matter of the aforesaid notice or advertisement.

Public

My Commission Expires:

ommonwealth of Pennsylvania - Notary Seal KATHERINE V. HARLEY, Notary Public Philadelphia County My Commission Expires May 25, 2025 Commission Number 1312829

Ad No: 68777 Customer No: 110234

COPY OF ADVERTISEMENT

Notice of an Intent Notice of an intent to Remediate to an Environmental Standard and Notification of Submittal of a Final Remediation Report (Section 304(n)(2)(i)) (Sections 302(e)(1)(ii), 303(h)(1)(ii), 304(n)(1)(i), and 305(c)(1))

304(n)(1)(1), and 305(c)(1)) Pursuant to the Land Recycling and Environmen-tal Remediation Standards Act, the act of May 19, 1995, P.L. 4, No. 1995-2, notice is hereby given that Philadelphia Energy Solutions Retining and Marketing LLC has submitted to the Pennsylvania Department of Environmental Protection a Notice of Intent to Remediate a site located at 3144 West Passyunk Avenue, Philadelphia, PA. This Notice of Intent to Remediate states the site is the Former Philadelphia Energy Solutions Refinery. The por-tion of the site has been found to be contami-nated with petroleum products which has contami-nated soil on the site. Philadelphia Energy Solu-tions Refining and Marketing LLC has indicated that the remediation measures consisted of soil excavation. The site will be used for non-residen-tial commercial/industrial use. Notice is hereby given that Philadelphia Energy Solutions Refining and Marketing LLC will submit a Final Report to the Pennsylvania Department of Environmental Protection, Southeast Regional Of-fice, to demonstrate attainment of the Statewide Health Standards for soil at a portion of the Site located at 3144 Passyunk Avenue, Philadelphia, Pennsylvania. The remediation measures taken in-clude soil excavation and removal and demon-strate attainment of the Statewide Health Stan-dards established under the Land Recycling and Environmental Remediation Standards Act.

Environmental Remediation Standards Act.

This notice is made under the provision of the Land Recycling and Environmental Remediation Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

Technical Excellence Practical Experience Client Responsiveness

June 02, 2021

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Thomas Farley, MD, MPH Health Commissioner 1101 Market Street, 13th Floor Philadelphia, PA 19107

RE: Notice of Intent to Remediate Former Philadelphia Energy Solutions (PES) Refinery 3144 West Passyunk Avenue Philadelphia, Pennsylvania

Dear Mr. Farley:

The Land Recycling and Environmental Remediation Standards Act (Act 2) requires that a Notice of Intent to Remediate (NIR) be provided to the municipality in which the site is located. In accordance with this provision of Act 2, we are formally notifying you of our intent to remediate a portion of the Former Philadelphia Energy Solutions Refinery Property (site). A copy of the NIR form, which has been sent to the Department of Environmental Protection (DEP), is enclosed. The following notice will also be published in the Pennsylvania Bulletin, and a summary of the notice has been published in a local newspaper.

Notice is hereby given that Philadelphia Energy Solutions Refining & Marketing LLC will be submitting an Act 2 Final Report for petroleum-impacted soils related to a limited-area release to the PADEP for a portion of the site known as the Former Philadelphia Energy Solutions Refinery located at 3144 West Passyunk Avenue, Philadelphia, Pennsylvania. The Final Report indicates that the remediation performed has demonstrated attainment of the statewide health cleanup standard for soil related to a discharge of light naphtha which occurred near Unit 136 at the site.

 1818 Market Street, Suite 3300
 Philadelphia, PA 19103
 T: 215.845.8900
 F: 215.845.8901
 www.langan.com

 New Jersey • New York • Connecticut • Pennsylvania • Washington, DC • Virginia • West Virginia • Ohio • Florida • Texas • Arizona • California

 Abu Dhabi • Athens • Doha • Dubai • London • Panama

This notice is made under the provision of the Land Recycling and Environmental Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

Please call me at (215) 845-8915 if you have any questions concerning the proposed remediation.

Sincerely, Langan Engineering & Environmental Services, Inc. July a Sulf Jeffrey A. Smith, P.G. Associate

Enclosure: Notice of Intent to Remediate Form

cc. Joseph Jeray Anne Garr Julianna Connolly Charlene Drake

Remove X

USPS Tracking[®]

Track Another Package +

Tracking Number: 70190140000095735010

Your item was delivered to the front desk, reception area, or mail room at 1:44 pm on June 16, 2021 in PHILADELPHIA, PA 19104.

Solution Desk/Reception/Mail Room

June 16, 2021 at 1:44 pm PHILADELPHIA, PA 19104

Get Updates 🗸

Text & Em	ail Updates		\checkmark
Tracking I	History		\checkmark
Product lı	nformation		^
Postal Product:	Features: Certified Mail [™]	See tracking for related item: 9590940253619189633222 (/go/TrackConfirmAction?tLabels=9590940253619189633222)	

First-Class Mail[®] Certified Mail[™]

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs

Technical Excellence Practical Experience Client Responsiveness

June 10, 2021

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Ms. Leigh Anne Rainford Philadelphia Department of Public Health Environmental Health Services 321 University Avenue – 2nd Floor Philadelphia, PA 19104 LeighAnne.Rainford@Phila.gov

RE: Notice of Intent to Remediate Former Philadelphia Energy Solutions (PES) Refinery 3144 West Passyunk Avenue Philadelphia, Pennsylvania

Dear Ms. Rainford:

The Land Recycling and Environmental Remediation Standards Act (Act 2) requires that a Notice of Intent to Remediate (NIR) be provided to the municipality in which the site is located. In accordance with this provision of Act 2, we are formally notifying you of our intent to remediate a portion of the Former Philadelphia Energy Solutions Refinery Property (site). A copy of the NIR form, which has been sent to the Department of Environmental Protection (DEP), is enclosed. The following notice will also be published in the Pennsylvania Bulletin, and a summary of the notice has been published in a local newspaper.

Notice is hereby given that Philadelphia Energy Solutions Refining & Marketing LLC will be submitting an Act 2 Final Report for petroleum-impacted soils related to a limited-area release to the PADEP for a portion of the site known as the Former Philadelphia Energy Solutions Refinery located at 3144 West Passyunk Avenue, Philadelphia, Pennsylvania. The Final Report indicates that the remediation performed has demonstrated attainment of the statewide health cleanup standard for soil related to a discharge of light naphtha, which occurred near Unit 136 at the site.

 1818 Market Street, Suite 3300
 Philadelphia, PA 19103
 T: 215.845.8900
 F: 215.845.8901
 www.langan.com

 New Jersey • New York • Connecticut • Pennsylvania • Washington, DC • Virginia • West Virginia • Ohio • Florida • Texas • Arizona • California

 Abu Dhabi • Athens • Doha • Dubai • London • Panama

This notice is made under the provision of the Land Recycling and Environmental Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

Please call me at (215) 845-8915 if you have any questions concerning the proposed remediation.

Sincerely, Langan Engineering & Environmental Services, Inc.

Jeffrey A. Smith, P.G.

Associate

Enclosure: Notice of Intent to Remediate Form

M: 2037 CI PHILADELPH:	IDDLE CI HESTNUT IA, PA 1	ST FL 1 19103-999	
06/03/2021	00)275-8	3777	02:46 PM
Product	Qty	Unit Price	Price
First-Class Mail@ Letter Philadelphia, M Weight: 0 lb 1	.10 oz	07	\$0.75
Estimated Delly Mon 06/07/3 Certified Mail(2021	te	\$3.60
Mon 06/07/2 Certified Mail(Tracking #	2021 8 :		\$3.60
Mon 06/07/3 Certified Mail Tracking # 701710 Return Receipt Tracking #	2021 8 : 70000038 :	303 3952 ~	\$2.85
Mon 06/07/3 Certified Mail Tracking # 701710 Return Receipt Tracking #	2021 8 : 70000038 :		\$2.85
Mon 06/07/3 Certified Mail Tracking # 701710 Return Receipt Tracking # 9590 9	2021 8 : 70000038 :	303 3952 ~	\$2.85 \$9.95

UNITED STATES

USPS is experiencing unprecedented volume increases and limited employee availability due to the impacts of COVID-19. We appreciate your patience.

Text your tracking number to 28777 (2USPS) to get the latest status. Standard Message and Data rates may apply. You may also visit www.usps.com USPS Tracking or call 1-800-222-1811.

Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Go to: https://postalexperience.com/Pos or scan this code with your mobile device.

or call 1-800-410-7420.

UFN: 416551-0139 Receipt #: 840-51900090-3-4632552-2 Clerk: 90

USPS Tracking[®]

Track Another Package +

Tracking Number: 70171070000038033952

Your item has been delivered to an agent for final delivery in PHILADELPHIA, PA 19107 on June 12, 2021 at 11:43 am.

Solution Delivered to Agent for Final Delivery

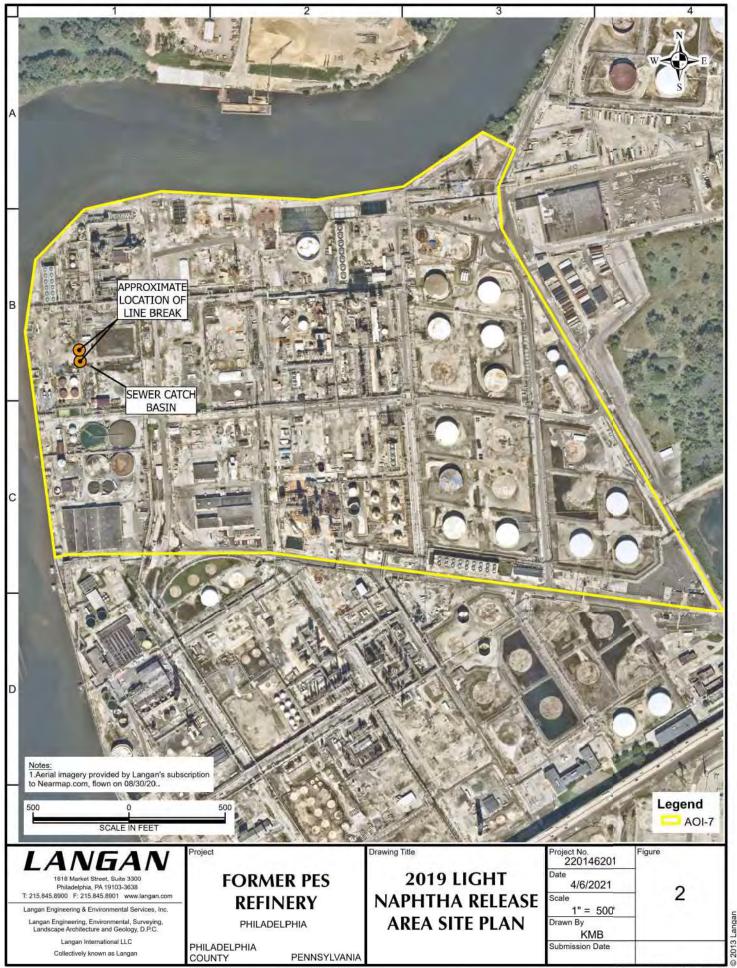
June 12, 2021 at 11:43 am PHILADELPHIA, PA 19107

Get Updates 🗸

Text & Em	nail Updates		\checkmark
Tracking	History		\checkmark
Product I	nformation		^
Postal Broduct:	Features:	See tracking for related item: 9590940245438278183995 //ao/TrackConfirmAction2tl abols_9590940245438278183995)	

Certified Mail

(/go/TrackConfirmAction?tLabels=9590940245438278183995)


See Less A

Remove X

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs

Path: \\langan.com\data\PHL\data2\220146201\Project Data\ArcGIS\APRX\PESRM_11-19-20\PESRM.Aprx Date: 4/6/2021 User: kbancone Time: 2:25 PM

April 16, 2025

Ms. Leigh Anne Rainford Program Manager Philadelphia Department of Public Health Environmental Health Services 7801 Essington Avenue Philadelphia, PA 19153

sent via email to LeighAnne.Rainford@Phila.gov and UPS, Proof of Delivery Requested

Subject: Notice of Remedial Investigation and Final Report Submission (eFACTS 850105) 136 Naphtha Release Former Philadelphia Energy Solutions Refinery 3144 West Passyunk Avenue Philadelphia, PA 19153

Dear Ms. Rainford:

This letter provides notice that Terraphase Engineering Inc. (Terraphase), on behalf of Bellwether District Holdings, LLC (BDH) (formerly Philadelphia Energy Solutions Refining & Marketing LLC [PESRM]), will submit a combined Remedial Investigation and Final Report to the Department of Environmental Protection for the 136 Naphtha Release area (eFACTS 850105) within the Former Philadelphia Refinery located at 3144 West Passyunk Avenue, Philadelphia, Pennsylvania. The Remedial Investigation and Final Report indicates that the remediation performed has attained compliance with the Statewide health cleanup standard.

This notice is made under the provision of the Land Recycling and Environmental Remediation Standards Act, the Act of May 19, 1995, P.L. 4, No. 2.

Sincerely,

for Terraphase Engineering Inc.

Kevin I. Long

Kevin L. Long Senior Principal Consultant

KL:cs

cc: Julianna Connolly (jconnolly@hilcoglobal.com) Amy Piccone (apiccone@hilcoglobal.com)

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF ENVIRONMENTAL CLEANUP AND BROWNFIELDS

For DEP Use Only
PF #
Rem ID #

FINAL REPORT SUMMARY

The Final Report Summary (FRS) is a brief report consisting of set of data required in addition to the Act 2 Final Report. The summary is used in part as a reference to the Final Report Approval Letter which conveys liability relief to the remediator and other applicable persons. It is of value long after the remediation to be used by the public and Department in understanding key information about the site and remediation.

This use is increased by the fact that it will ultimately be merged into the Department's eFACTS system, which allows the public to have the ease of computer access to environmental information at sites. For more information, see www.ahs.dep.pa.gov/eFACTSWeb/default.aspx. Finally, the summary will be used by the Department to help to better assess the status and the level of success of the program. In the past, numbers of sites remediated has been tracked. With the inclusion of this summary information, progress can be tracked in many specific ways, including identification of individual chemical constituents, and the mass treated, removed or managed safely in place.

Identification

Property Name <u>136 Naphtha Release</u>		
Property Descriptor Former Philadelphia Refinery		
Address / Location		
Address 3144 West Passyunk Ave		
City Philadelphia	Zip Code <u>19153</u>	
Municipality(s) <u>Philadelphia</u>	County(ies) Philadelphia	
Latitude <u>39</u> ° (deg). <u>52</u> ' (min) <u>46.92</u> " (sec)	Longitude <u>75</u> ° (deg). <u>15</u> ' (min) <u>55.8</u> " (sec)	
Horizontal Collection Method GIS		
Horizontal Reference Datum NAD 83 (2011)	Reference Point See Figure 1 attached	
Property Specifics		
Size of Property <u>1,300-acre</u>	Number of Sites <u>1</u>	
Combined acreage of sites <u>.0.034</u>	_	
Remediation		
Standards attained or special industrial area attainment.	(Check all that apply. Can use multiple.)	
□ Background	Site-Specific Special Industrial Area	
Proposed future property use - scenario for which the att	ainment of Statewide Health standard is demonstrated	
□ Residential		
List of contaminants		

Soils

Chemical Name	CAS Number	Mass Contaminant Treated or Removed (lbs.)	Mass Contaminant Managed on Site (Ibs.)
Benzene	71-43-2	0.037	
Cumene	98-82-8	46.8	
Ethyl Benzene	100-41-4	0.030	
Methyl tert-butyl ether	1634-04-4	0.001	
Toluene	108-88-3	0.05	
1,2,4-Trimethylbenzene	95-63-6	50.32	
1,3,5-Trimethylbenzene	108-67-8	16.61	
Xylenes (total)	1330-20-7	0.21	
Naphthalene	91-20-3	3.12	

2610-FM-BECB0011 Rev. 12/2015

Groundwater

Chemical Name	CAS Number	Mass Contaminant Treated or Removed (lbs.)	Mass Contaminant Managed on Site (Ibs.)

Remediation

Number of sampling rounds for groundwater attainment: NA

Special Features

Non-use aquifer approval date: NA

Area-wide background approval date: NA

Amount of waste removed other than soil or groundwater (cubic yards): NA

Municipal ordinance prohibiting groundwater use:

Post remediation care plan:

In accordance with Sections III.E.3, IV.A, and IV.H of the Land Recycling Program Technical Guidance Manual (PADEP 2021), institutional and, as needed, engineering controls will be implemented as part of a post-remediation care plan to maintain attainment of the SHS, in the event that occupied buildings are planned in proximity to the Site. As an institutional control, prior to their construction and occupancy, on-facility buildings which could be occupied in the future will be subject to vapor intrusion investigation and evaluation to determine if conditions (i.e., volatilization of COPC from soil, groundwater, and/or light non-aqueous phase liquid) could pose an unacceptable risk to occupants. As needed, vapor mitigation systems will be incorporated into the design and construction of such buildings as engineering controls where potentially unacceptable vapor intrusion risks are identified. These activities and use limitations will eliminate the potential for future unacceptable exposures to COPCs at the Site via vapor intrusion.

Other Programs

Key Site

Multi-site Agreement; Date:

Enterprise Zone

Keystone Opportunity Zone

Administrative

Municipality request for public involvement plan

Deed notification

Deed acknowledgment:

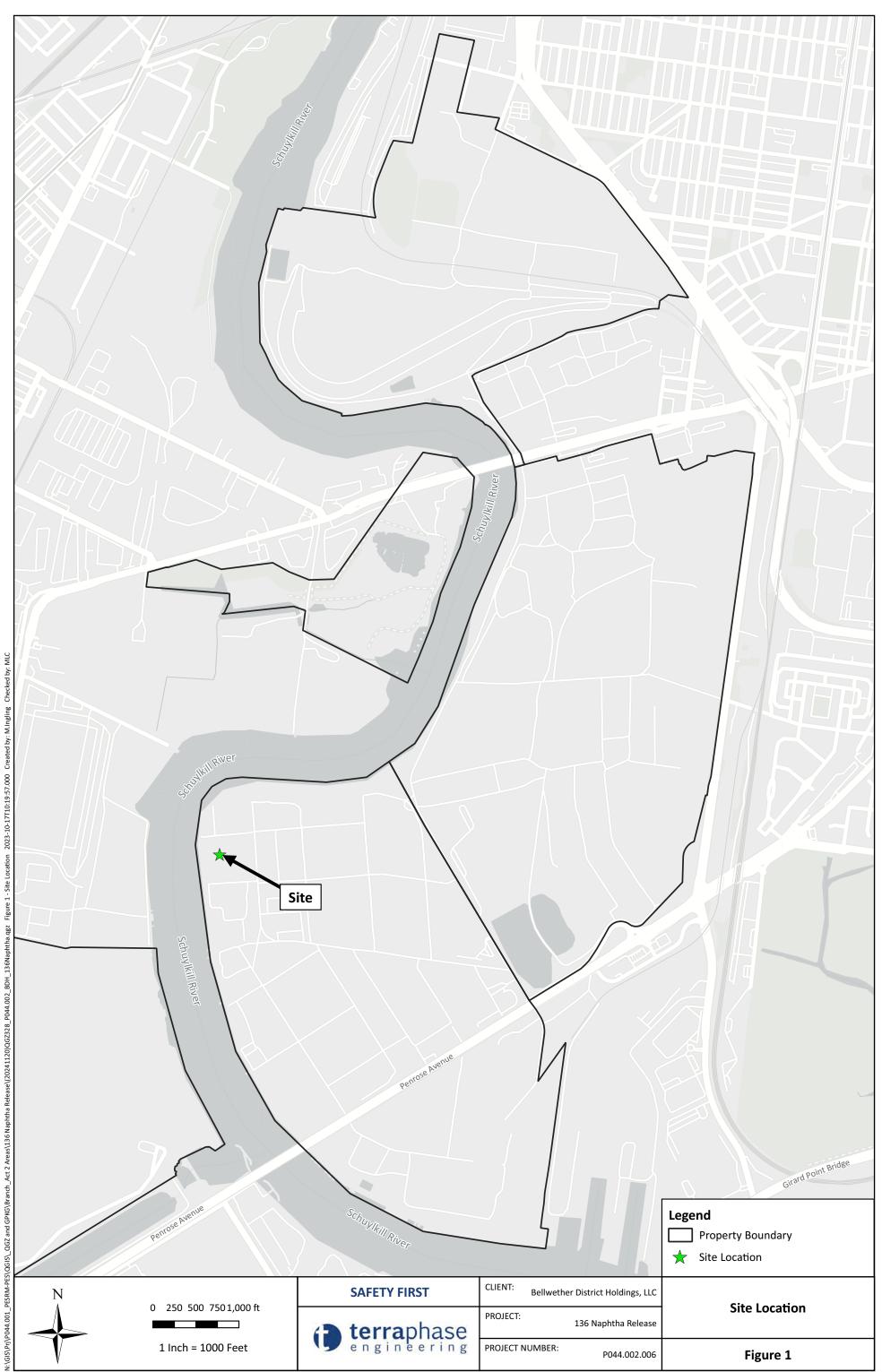
NA

Environmental covenant:

NA

Cleanup cost (\$): 225,000

Jobs created/saved: 2


Narrative: Provide property history and description, site characterization findings, site description, summary of remediation, summary of attainment demonstration, description of pathway elimination, engineering and institutional controls, and benefits of land reuse, when applicable.

On February 22, 2019, the No. 4 Separator occurred as a result of an overflow from the unit due to a check valve failure and backflow from Tank 1136 to the No. 4A Separator. NorthStar Contracting Group, Inc. (NorthStar) is a contractor for the property owner, Philadelphia Energy Solutions Refining and Marketing LLC (PESRM), responsible for operating the on-Site industrial wastewater treatment plants. Based upon the information provided by NorthStar Contacting Group, Inc. (NorthStar), On February 22, 2019, approximately 53,000 gallons of light naphtha product were released from an aboveground pipeline associated with Refinery Unit 137. In February 2019, the Refinery Unit 137 was restarted following maintenance and the light naphtha was released out of two defects in the product line. The product was released to the ground surface in the area close to former Refinery Unit 136. The product was observed to flow to the south, parallel to the aboveground piping, and then east toward a sewer catch basin. Immediate response actions were implemented, which included immediate removal of liquids from the storm sewer and culvert via vacuum truck, installation of test pits which were advanced along the compromised product line, removal of water/product from the test pits, and the replacement of the damaged section of piping were implemented.

A remedial investigation was subsequently performed to define the extent of the release and to determine the area over which impacted soil should be remediated. During the course of these efforts, pre-existing sources of contamination in the area were discovered including in the footprint of the February 2019 release. This included buried deteriorated drums, viscous product in these drums and surrounding soil, and dark LNAPL seeping from beneath portions of a north-south trending concrete footer located along the eastern boundary of the area impacted by the February 2019 release. These sources and the related contamination were managed by Evergreen. Soil impacted by the February 2019 release was subsequently excavated, containerized, and transported off-site for disposal between November 25 and December 12, 2019. Post-excavation and additional soil characterization sampling was conducted to fully characterize the area and to support an evaluation in accordance with the requirements of Act 2. Based on results of attainment soil sampling, the identified chemical concentrations demonstrate attainment of the Nonresidential SHS MSCs and all the requirements of the SHS have been met.oil and water level rose over a portion of the Separator's wall and then flowed along the overland grade of the adjacent roadway and eventually reached the bulkhead along the Schuylkill River. Oil and water then migrated through gaps in the sheet pile bulkheads and entered the Schuylkill River. Oil and water also entered the on-site sewer system and overflowed at several sewer box and sewer inlet locations along the bulkhead. The release area was approximately 6,700 square feet. Following the initial release, a prompt interim response was completed, including a shallow surface soil excavation. Soil sampling was conducted to fully characterize the area and to support an evaluation in accordance with the requirements of Act 2. Based on results of attainment soil sampling, the identified chemical concentrations demonstrate attainment of the Nonresidential SHS MSCs and all the requirements of the SHS have been met.

Remediator / Property Owner / Consultant . Complete the form below for <u>each</u> recipient obtaining a release of liability upon approval of the final report. Attach additional sheets as necessary.				
Remediator				
Contact Person/Title Anne R. Garr/Assistant Secretary		eFACTS Client ID* Facility ID No. 51-33624		
Relationship to Site Owner		Client Type* Limited Liability Company		
(e.g. owner, remediator, participant in cleanu	• •			
Phone Number (<u>312) 283-4469</u>		dress agarr@hilcoglobal.com		
Company Name Bellwether District Holdings	<u>, LLC</u> EIN or Fede	EIN or Federal ID #		
Street Address 3144 W. Passyunk Avenue				
City Philadelphia	State PA	Zip Code <u>19153</u>		
Property Owner				
Contact Person/Title Anne R. Garr/Assistant Secretary		eFACTS Client ID* Facility ID No. 51-33624		
Relationship to Site Owner		Client Type* Limited Liability Company		
(e.g. owner, remediator, participant in cleanu				
	Phone Number (312) 283-4469 Email Address agarr@hilcoglobal.com			
Company Name Bellwether District Holdings	<u>, LLC</u> EIN or Fede	eral ID #		
Street Address 3144 W. Passyunk Avenue				
City <u>Philadelphia</u>	State <u>PA</u>	Zip Code <u>19153</u>		
Γ				
Consultant				
_		eFACTS Client ID*		
Relationship to Site Consultant		Client Type* Corporation		
(e.g. owner, remediator, participant in cleanu				
Phone Number <u>609-236-8171, ext 93</u> Ema				
		EIN or Federal ID #		
Street Address 100 Canal Pointe Boulevard,	Suite 110			
City <u>Princeton</u>	State <u>NJ</u>	Zip Code <u>08540</u>		
*Include eFACTS Client ID (if known) – "Client Ty				
Association/Organization L Authority L	imited Liability Company imited Liability Partnership	Partnership-General Partnership-Limited		
County	lunicipality	School District		
Estate/Trust N Federal Agency C	Ion-Pennsylvania Governmen)ther (Non-Government)	t Sole Proprietorship State Agency		
	Pennsylvania Corporation			

Attachments: In addition to the data entered in this FRS, the Department requests scanned image(s) of a map view of the site indicating, at a minimum, the boundaries of the "site" relative to the locations of the adjacent property boundaries. The location of the site (as defined by Act 2) is that which will receive the liability relief conveyed by Act 2, Chapter 5. The maps may portray other features but should clearly show the Act 2 site boundaries. You may also attach other applicable image files or attachments. These files should be in Adobe Acrobat (*.pdf), GIF (*.gif) or JPEG file interchange format (*.jpg).

UPS Alexander Strohl UPS Delivery Notification, Tracking Number 1Z75YA670191998676 Thursday, April 17, 2025 10:14:25 AM

Hello, your package has been delivered. Delivery Date: Thursday, 04/17/2025 Delivery Time: 10:08 AM Left At: FRONT DESK Signed by: hupp

TERRAPHASE ENGINEERING

Tracking Number:

1Z75YA670191998676

Ship To:	PHILADELPHIA DEPT OF PUBLIC HEALTH 7801 ESSINGTON AVENUE ENVIRONMENTAL HEALTH SERVICES PHILADELPHIA, PA 19153 US
Number of Packages:	1
UPS Service:	UPS Next Day Air®
Package Weight:	0.5 LBS
Reference Number:	P044.001.006_STROHL

Discover more about UPS:

Visit www.ups.com

Sign Up For Additional E-Mail From UPS

Read Compass Online

 $^{\odot}$ 2025 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

Review the UPS Privacy Notice

For Questions, Visit Our Help and Support Center

?

Notification of Receipt of a Remedial Investigation and Final Report (for Statewide health standard). (Sections 302(e)(2), 303(h)(2))

Notice is hereby given that Bellwether District Holdings, LLC (BDH) (formerly Philadelphia Energy Solutions Refining & Marketing LLC [PESRM]) has submitted a combined Remedial Investigation and Final Report to the Department of Environmental Protection, Southeast Regional Office, to demonstrate attainment of the Statewide health standard for the 136 Naphtha Release area (eFACTS 850105) within the Former Philadelphia Refinery located at 3144 West Passyunk Avenue, Philadelphia, Pennsylvania. BDH has indicated that the remediation measures taken have attained compliance with the Statewide health cleanup standard established under the Land Recycling and Environmental Remediation Standards Act.

This notice is made under the provision of the Land Recycling and Environmental Remediation Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

Payment Receipt

The Philadelphia Inquirer

100 S. INDEPENDENCE MALL W, STE 600, PHILADELPHIA, PA 19106

Payee Information

Account No.	104799
Customer Name	TERRAPHASE ENGINEERING
Advertiser	#ADVERTISER_ID#
Advertiser Name	#ADVERTISER_NAME#

Payment Detail

Payment/Receipt No.	19450.CC
Payment Date	4/14/2025
Payment Method	Credit Card (Auth: 9cdx41vj)
Payment Entered By	Helene Sweeney
Payment Comment	PRE-PAYMENT FOR 78193

Payment Amount

1,146.32

Orders Pre-paid

Order No.	Order Type	Paid Amount
78193	Digital Advertising Order	1,146.32

The Philadelphia Inquirer

100 S. INDEPENDENCE MALL W, STE 600, PHILADELPHIA, PA 19106

Affidavit of Publication

On Behalf of: TERRAPHASE ENGINEERING 1100 E HECTOR ST SUITE 400 CONSHOHOCKEN, PA 19428

STATE OF PENNSYLVANIA COUNTY OF PHILADELPHIA:

Before the undersigned authority personally appeared the undersigned who, on oath represented a and say: that I am an employee of The Philadelphia Inquirer, LLC, and am authorized to make this affidavit of publication, and being duly sworn, I depose and say:

1. The Philadelphia Inquirer, LLC is the publisher of the Philadelphia Inquirer, with its headquarters at 100 S. Independence Mall West, Suite 600, Philadelphia, PA 19106.

2. The Philadelphia Inquirer is a newspaper that which was established in in the year 1829, since which date said daily newspaper has been continuously published and distributed daily in the City of Philadelphia, count and state aforesaid.

3. The printed notice or publication attached hereto set forth on attached hereto was published in all regular print editions of

The Philadelphia Inquirer on

Legal Notices

as published in Inquirer Legals in the issue(s) of:

4/16/2025

4. Under oath, I state that the following is true and correct, and that neither I nor The Philadelphia Inquirer, LLC have any is interest in the subject matter of the aforesaid notice or advertisement.

Helene Surces

Notary Public

My Commission Expires:

Commonwealth of Pennsylvania - Notary Seal Nancy S Fisher, Notary Public Philadelphia County My Commission Expires June 27, 2027 Commission Number 1433937

Ad No: 185275 Customer No: 104799

COPY OF ADVERTISEMENT

Notification of Receipt of a Remedial Investigation and Final Report (for Statewide health standard). (Sections 302(e)(2), 303(h)(2))

302(e)(2), 303(h)(2)) Notice is hereby given that Bellwether District Holdings, LLC (BDH) (formerly Philadelphia Energy Solutions Refining & Marketing LLC (PESRM]) has submitted a combined Remedial investigation and Final Report to the Department of Environmental Protection, Southeast Regional Office, to demonstrate attainment of the Statewide health standard for the 136 Naphtha Release area (eFACTS 850105) within the Former Philadelphia Refinery located at 3144 West Passyunk Avenue, Philadelphia, Pennsylvania. BDH has indicated that the remediation measures taken have attained compliance with the Statewide health cleanup standard established under the Land Recycling and Environmental Remediation Standards Act. This notice is made under the provision of the Land Recycling and Environmental Remediation Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

No. 2.

Land Recycling Program Transmittal Sheet for Plan/Report Submission

Instructions: Please provide all requested information in each of the four sections. This transmittal sheet shall accompany any plan/report submitted to the Department under the Land Recycling Program. Proper completion of the Transmittal Sheet will assist Department review and may avoid a finding of plan/report deficiency. The Facility ID number can be obtained from the Department's Environmental Cleanup Program in the region where the site is located.

Section 1 - Site Identification

eFACTS Facility ID 850105

Site Name 136 Naphtha Release

Site Address 3144 West Passyunk Ave

Municipality and County Philadelphia, Philadelphia County

Section 2 - Remediation Standard . . Plan/Report . . Fees

Identify the remediation standard being pursued and the type of plan/report being submitted. Please note required Department fees follow each type of plan/report.

Check the relevant standard and the type of plan/report being submitted.

 Background Standard Final Report (\$250 fee) 	Statewide Health Standard* Final Report (\$250 fee)
Site-Specific Standard	Special Industrial Area
Remedial Investigation Report (\$250 fee)	Work Plan (no fee)
Risk Assessment Report (\$250 fee)	 Baseline Environmental Report (no fee)
🔲 Cleanup Plan (\$250 fee)	*A final report submitted under a combination of cleanup standards should be accompanied with a
☐ Final Report (\$500 fee)*	fee representing the higher of the two standards' final report fee.

Ensure your check covers all required fees and is made payable to the **Commonwealth of Pennsylvania**.

Section 3 - Municipal/Public Notice Confirmation

There are two stages in the Land Recycling Program where municipal and public notices are required. Read the information associated with each stage. You will be asked to confirm that information establishing your compliance with these notification requirements has been included with this submission.

Check here if you are planning to meet the Background or Statewide Health Standard and your Final Report has been submitted within 90 days of the release.

Indicate date of release here February 22, 2019

No further completion of this section is required if your Final Report for these two standards conforms to the 90 day time frame.

Stage 1 - Notice of Intent to Remediate (NIR)

- Check here to confirm you have included proof that a copy of your NIR was provided to each municipality where your site is located. Proof will be a copy of your cover letter and a copy of a signed certified mail receipt slip from the municipality.
- Check here to confirm a copy of a proof of publication document from a newspaper serving the area of your site has been included with this submission.
- Check here to indicate that a Site-Specific Standard or a Special Industrial Area is involved and a municipal request was received for development of a public involvement plan. The plan/report submission shall include municipality and public comments, which were submitted, and your responses to those comments.

Stage 2 - Cleanup Plan/Report Submission

<u>4/16/2025</u> Place date here that each municipality was notified of any plan or report submitted under any of the three remediation standards.

 Philadelphia Inquirer
 4/16/2025
 Place
 the
 newspaper

 name and date that your notice of your plan/report submission was published.
 Place
 Pl

Section 4 - Project Contact

On the lines below, place the name, company, mailing addresses and business phone number of the individuals who can be contacted regarding this submission:

Contact Person/Title: Kevin Long / Consultant
Phone Number (609) 236-8171 x93
Email Address kevin.long@terraphase.com
Company Name: Terraphase Engineering Inc.
Mailing Address (street, city, state, zip)
100 Canal Pointe Boulevard, Suite 110, Princeton, NJ
Remediator
Contact Person/Title: Anne R. Garr / Assistant Secretary
Phone Number (312) 283-446
Email Address agarr@hilcoglobal.com
Company Name: Bellwether District Holdings, LLC
Mailing Address (street, city, state, zip)
3144 West Passyunk Ave, Philadelphia, PA 19153
Other
Contact Person/Title:
Relationship to Site
(e.g. owner, participant in cleanup, responsible party, etc.)
Phone Number
Email Address
Company Name:
Mailing Address (street, city, state, zip)

Appendix B

Historical Soil Analytical Results

Table B-1 Summary of Historical Soil Analytical Results 136 Naphtha Release Area Bollwether District Holdings, H.C. Bhiladelphia, D

Bellwether District Holdings, LLC, Philadelphia, PA

Location	Non-Residential	Non-Res Used	Non-Residential	AOI7-BH-01-2019	AOI7-BH-02-2019	AOI7-BH-03-2019	AOI7-BH-04-2019	AOI7-BH-05-2019	AOI7-BH-06-2019	AOI7-BH-07-2019
Field Sample ID	Non-Residential Direct Contact	Aquifer	Non-Residential Vapor Intrusion	AOI7-BH-01-2019(1.0-1.5)	AOI7-BH-02-2019(2.0-2.5)	AOI7-BH-03-2019(2.5-3.0)	AOI7-BH-04-2019(2.5-3.0)	AOI7-BH-05-2019(1.5-2.0)	AOI7-BH-06-2019(0.5-1.0)	AOI7-BH-07-2019(1.5-2.0)
Sample Date	MSCs	(TDS ≤ 2500)	Screening Values	3/26/2019	3/26/2019	3/22/2019	3/22/2019	3/22/2019	3/26/2019	3/26/2019
Comments	IVISCS	Soil-to-GW MSC	Screening values							
Volatile Organic Compounds										
Benzene	280	0.5	0.13	0.003 J (0.008)	0.05 J (0.29)	ND (0.006)	0.44 (0.27)	0.46 (0.28)	0.001 J (0.007)	ND (0.004)
sec-Butylbenzene	10000	2300		NA						
tert-Butylbenzene	10000	1800		NA						
Cumene	10000	2500	2500	ND (0.008)	0.62 (0.29)	ND (0.006)	0.062 J (0.27)	1.2 (0.28)	ND (0.007)	ND (0.004)
Cyclohexane	10000	6900	6900	NA						
1,2-Dibromoethane	3.7	0.005	0.0013	NA						
Ethyl Benzene	880	70	46	ND (0.008)	0.055 J (0.29)	ND (0.006)	0.058 J (0.27)	0.12 J (0.28)	ND (0.007)	ND (0.004)
Hexane	10000	5300	5300	NA						
Methyl tert-butyl ether	8500	2	1.4	ND (0.008)	ND (0.29)	0.001 J (0.006)	ND (0.27)	ND (0.28)	ND (0.007)	ND (0.004)
Toluene	10000	100	44	0.002 J (0.008)	0.054 J (0.29)	ND (0.006)	0.3 (0.27)	0.25 J (0.28)	0.001 J (0.007)	0.0003 J (0.004)
1,2,4-Trimethylbenzene	4700	300	300	0.001 J (0.008)	0.11 J (0.29)	ND (0.006)	0.042 J (0.27)	0.17 J (0.28)	ND (0.007)	ND (0.004)
1,3,5-Trimethylbenzene	4700	93	93	ND (0.008)	0.046 J (0.29)	ND (0.006)	ND (0.27)	0.048 J (0.28)	ND (0.007)	ND (0.004)
Xylenes (total)	7900	1000	990	ND (0.008)	0.23 J (0.29)	ND (0.006)	0.17 J (0.27)	0.76 (0.28)	ND (0.007)	ND (0.004)
Semi-Volatile Organic Compounds										
Acenaphthene	190000	4700		NA						
Anthracene	190000	350		NA						
Benzo(a)anthracene	130	340		NA						
Benzo(a)pyrene	91	46		NA						
Benzo(b)fluoranthene	76	170		NA						
Benzo(g,h,i)perylene	190000	180		NA						
Benzo(k)fluoranthene	76	610		NA						
1,1-Biphenyl	34	1.5	1.5	NA						
Chrysene	760	230		NA						
Dibenz(a,h)anthracene	22	270		NA						
Fluoranthene	130000	3200		NA						
Fluorene	130000	3800		NA						
Indeno(1,2,3-cd)pyrene	76	18000		NA						
2-Methylnaphthalene	240	100		NA						
4-Methylphenol	16000	49		NA						
Naphthalene	66	25		0.001 J (0.008)	1.9 (0.29)	0.0009 J (0.006)	0.16 J (0.27)	ND (0.28)	ND (0.007)	ND (0.004)
Phenanthrene	190000	10000		NA						
bis(2-Ethylhexyl)phthalate		130		NA						
Pyrene	96000	2200		NA						
Metals										
Cobalt	960	130		NA						
Lead	1000	450		NA						
Nickel	64000	650		NA						
Vanadium	16000	49000		NA						
Zinc	190000	12000		NA						
Notos	200000	12000								

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Table B-1 Summary of Historical Soil Analytical Results 136 Naphtha Release Area

Bellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID Sample Date Comments	Non-Residential Direct Contact MSCs	Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Vapor Intrusion Screening Values	AOI7-BH-08-2019 AOI7-BH-08-2019(0.25-0.5) 3/26/2019	AOI7-BH-09-2019 AOI7-BH-09-2019(0.25-0.5) 3/26/2019	AOI7-BH-10-2019 AOI7-BH-10-2019(2.0-2.5) 3/26/2019	AOI7-BH-11-2019 AOI7-BH-11-2019(1.5-2.0) 3/26/2019	AOI7-BH-12-2019 AOI7-BH-12-2019(1.0-1.5) 3/26/2019	AOI7-BH-13-2019 AOI7-BH-13-2019(1.5-2.0) 3/26/2019	AOI7-BH-14-2019 AOI7-BH-14-2019(1.0-1.5) 3/26/2019
		3011-10-GW 1VISC								
Volatile Organic Compounds	200	0.5	0.42		0.002 (0.005)			0.000 (0.00)	1 2 (0 12)	0 40 4 (0 27)
Benzene	280	0.5		<u>40 (4.4)</u>	0.002 J (0.005)	ND (0.26)	ND (0.25)	0.068 J (0.22)	<u>1.2 (0.42)</u>	0.19 J (0.27)
sec-Butylbenzene	10000	2300		NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	10000	1800		NA				NA ND (0.22)	NA	NA 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cumene	10000	2500		41 (4.4)	ND (0.005)	ND (0.26)	ND (0.25)	ND (0.22)	0.043 J (0.42)	0.068 (0.007)
Cyclohexane	10000	6900		NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	3.7	0.005		NA 22 (2 11)	NA ND (0.005)	NA A ADA L (A AG)	NA	NA ND (2.22)	NA	NA A AC (A ADAT)
Ethyl Benzene	880	70		20 (0.44)	ND (0.005)	0.029 J (0.26)	ND (0.25)	ND (0.22)	0.13 J (0.42)	0.26 (0.007)
Hexane	10000	5300		NA	NA	NA	NA	NA	NA	NA NA
Methyl tert-butyl ether	8500	2		ND (0.44)	ND (0.005)	ND (0.26)	ND (0.25)	ND (0.22)	ND (0.42)	ND (0.007)
Toluene	10000	100		<u>130 (4.4)</u>	0.001 J (0.005)	0.2 J (0.26)	0.031 J (0.25)	0.024 J (0.22)	1 (0.42)	0.2 J (0.27)
1,2,4-Trimethylbenzene	4700	300		26 (0.44)	ND (0.005)	ND (0.26)	ND (0.25)	0.035 J (0.22)	0.18 J (0.42)	0.31 (0.007)
1,3,5-Trimethylbenzene	4700	93		9.8 (0.44)	ND (0.005)	0.033 J (0.26)	ND (0.25)	ND (0.22)	0.091 J (0.42)	0.13 (0.007)
Xylenes (total) Semi-Volatile Organic Compounds	7900	1000	990	140 (4.4)	ND (0.005)	0.048 J (0.26)	ND (0.25)	ND (0.22)	0.78 (0.42)	0.15 J (0.27)
Acenaphthene	190000	4700		NA	NA	NA	NA	NA	NA	NA
Anthracene	190000	350		NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	130	340		NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	91	46		NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	76	170		NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	190000	180		NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	76	610		NA	NA	NA	NA	NA	NA	NA
1,1-Biphenyl	34	1.5	1.5	NA	NA	NA	NA	NA	NA	NA
Chrysene	760	230		NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	22	270		NA	NA	NA	NA	NA	NA	NA
Fluoranthene	130000	3200		NA	NA	NA	NA	NA	NA	NA
Fluorene	130000	3800		NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	76	18000		NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	240	100	100	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	16000	49		NA	NA	NA	NA	NA	NA	NA
Naphthalene	66	25	25	2 (0.44)	ND (0.005)	0.23 J (0.26)	0.078 J (0.25)	0.16 J (0.22)	0.1 J (0.42)	0.007 J (0.007)
Phenanthrene	190000	10000		NA	NA	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	6500	130		NA	NA	NA	NA	NA	NA	NA
Pyrene	96000	2200		NA	NA	NA	NA	NA	NA	NA
, Metals										
Cobalt	960	130		NA	NA	NA	NA	NA	NA	NA
Lead	1000	450		NA	NA	NA	NA	NA	NA	NA
Nickel	64000	650		NA	NA	NA	NA	NA	NA	NA
Vanadium	16000	49000		NA	NA	NA	NA	NA	NA	NA
Zinc	190000	12000		NA	NA	NA	NA	NA	NA	NA

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Table B-1 Summary of Historical Soil Analytical Results 136 Naphtha Release Area Deliverther District Maldians

Bellwether District Holdings, LLC, Philadelphia, PA

AOI7-PE AOI7-PE-01-2019(3 12/12/20	AOI7-BH-20-2019 AOI7-BH-20-2019(0.5-1.0) 3/26/2019	AOI7-BH-19-2019 AOI7-BH-19-2019(1.5-2.0) 3/26/2019	AOI7-BH-18-2019 AOI7-BH-18-2019(2.5-3.0) 3/26/2019	A017-BH-17-2019 A017-BH-17-2019(1.0-1.5) 3/26/2019	AOI7-BH-16-2019 AOI7-BH-16-2019(1.0-1.5) 3/26/2019	AOI7-BH-15-2019 AOI7-BH-15-2019(1.0-1.5) 3/26/2019	Non-Residential Vapor Intrusion Screening Values	Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW MSC	Non-Residential Direct Contact MSCs	Location Field Sample ID Sample Date Comments
								3011-to-0101 1015C		Volatile Organic Compounds
0.2 J (0.3	0.15 J (0.23)	0.003 J (0.007)	0.002 J (0.006)	0.011 (0.006)	<u>1.7 (0.28)</u>	<u>8.3 (0.23)</u>	0.13	0.5	280	Benzene
0.2 5 (0.3	0.15 J (0.23) NA	0.003 J (0.007) NA	0.002 J (0.008) NA	0.011 (0.008) NA	<u>1.7 (0.28)</u> NA	<u>8.3 (0.23)</u> NA	0.15	2300	10000	sec-Butylbenzene
	NA	NA	NA	NA	NA	NA		1800	10000	tert-Butylbenzene
0.06 J (0.1	ND (0.23)	0.036 (0.007)	ND (0.006)	ND (0.006)	0.76 (0.28)	0.47 (0.23)	2500	2500	10000	Cumene
0.003 (0	ND (0.23) NA	0.030 (0.007) NA	ND (0.000) NA	ND (0.000) NA	0.70 (0.28) NA	0.47 (0.23) NA	6900	6900	10000	Cyclohexane
	NA	NA	NA	NA	NA	NA	0.0013	0.005	3.7	1,2-Dibromoethane
0.04 J (0.1	0.061 J (0.23)	0.007 (0.007)	0.0008 J (0.006)	0.0005 J (0.006)	0.93 (0.28)	2.1 (0.23)	46	70	880	Ethyl Benzene
0.04 3 (0.	0.001 J (0.23) NA	0.007 (0.007) NA	0.0008 J (0.000) NA	0.0005 J (0.000) NA	0.55 (0.28) NA	2.1 (0.23) NA	5300	5300	10000	Hexane
ND (0.	ND (0.23)	ND (0.007)	ND (0.006)	ND (0.006)	ND (0.28)	ND (0.23)	1.4	2	8500	Methyl tert-butyl ether
0.19 J (0.1	0.84 (0.23)	0.009 (0.007)	0.002 J (0.006)	0.004 J (0.006)	4.3 (0.28)	12 (0.23)	44	100	10000	Toluene
					4.3 (0.28) 2.7 (0.28)		300	300	4700	
0.066 J (0. 0.043 J (0.	0.079 J (0.23) 0.045 J (0.23)	0.025 (0.007) 0.014 (0.007)	0.002 J (0.006)	ND (0.006) ND (0.006)	1.1 (0.28)	3.3 (0.23) 1.2 (0.23)	93	93	4700	1,2,4-Trimethylbenzene
			0.0006 J (0.006)				990	1000	7900	1,3,5-Trimethylbenzene Xylenes (total)
0.28 J (0.	0.68 (0.23)	0.057 (0.007)	0.004 J (0.006)	0.003 J (0.006)	9.1 (0.28)	13 (0.23)	990	1000		Semi-Volatile Organic Compounds
	NA	NA	NA	NA	NA	NA		4700	190000	Acenaphthene
	NA	NA	NA	NA	NA	NA		350	190000	Acenaphthene
			NA	NA	NA					
	NA	NA NA	NA	NA	NA	NA NA		340 46	130	Benzo(a)anthracene
	NA	NA	NA	NA	NA	NA		40	91 76	Benzo(a)pyrene
										Benzo(b)fluoranthene
	NA	NA	NA	NA	NA	NA		180	190000	Benzo(g,h,i)perylene
	NA	NA	NA	NA	NA	NA		610	76	Benzo(k)fluoranthene
	NA	NA	NA	NA	NA	NA	1.5	1.5	34	1,1-Biphenyl
	NA	NA	NA	NA	NA	NA		230	760	Chrysene
	NA	NA	NA	NA	NA	NA		270	22	Dibenz(a,h)anthracene
	NA	NA	NA	NA	NA	NA		3200	130000	Fluoranthene
	NA	NA	NA	NA	NA	NA		3800	130000	Fluorene
	NA	NA	NA	NA	NA	NA		18000	76	Indeno(1,2,3-cd)pyrene
	NA	NA	NA	NA	NA	NA	100	100	240	2-Methylnaphthalene
	NA ND (0.02)	NA NA	NA NA	NA A AD (D ADAC)	NA 0.05 L (0.00)	NA 0.16.1(0.00)		49	16000	4-Methylphenol
0.073 J (0.	ND (0.23)	ND (0.007)	0.002 J (0.006)	0.02 (0.006)	0.25 J (0.28)	0.16 J (0.23)	25	25	66	Naphthalene
	NA	NA	NA	NA	NA	NA		10000	190000	Phenanthrene
	NA	NA	NA	NA	NA	NA		130	6500	bis(2-Ethylhexyl)phthalate
	NA	NA	NA	NA	NA	NA		2200	96000	Pyrene
										Metals
	NA	NA	NA	NA	NA	NA		130	960	Cobalt
	NA	NA	NA	NA	NA	NA		450	1000	Lead
	NA	NA	NA	NA	NA	NA		650	64000	Nickel
	NA	NA	NA	NA	NA	NA		49000	16000	Vanadium
	NA	NA	NA	NA	NA	NA		12000	190000	Zinc

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Table B-1 Summary of Historical Soil Analytical Results 136 Naphtha Release Area Bollwether District Holdings, H.C. Bhiladelphia, D

Bellwether District Holdings, LLC, Philadelphia, PA

Location	Non-Residential	Non-Res Used	Non-Residential	AOI7-PE-02	AO17-PE-03	AOI7-PE-04	AO17-PE-05	AO17-PE-06	AO17-PE-07	AOI7-PE-08
Field Sample ID	Direct Contact	Aquifer	Vapor Intrusion	AOI7-PE-02-2019(4.5)	AOI7-PE-03-2019(3.0)	AOI7-PE-04-2019(2.5)	AOI7-PE-05-2019(2.0)	AOI7-PE-06-2019(4.0)	AOI7-PE-07-2019(2.5)	AOI7-PE-08-2019(4.0)
Sample Date	MSCs	(TDS ≤ 2500)	Screening Values	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Comments	IVISCS	Soil-to-GW MSC	Screening values							
Volatile Organic Compounds										
Benzene	280	0.5	0.13	ND (0.007)	0.025 (0.007)	0.032 J (0.26)	0.085 J (0.24)	ND (0.38)	0.024 (0.006)	0.001 J (0.006)
sec-Butylbenzene	10000	2300		NA						
tert-Butylbenzene	10000	1800		NA						
Cumene	10000	2500	2500	0.0009 J (0.007)	0.003 J (0.007)	0.63 (0.26)	0.034 J (0.24)	0.055 J (0.38)	0.002 J (0.006)	0.001 J (0.006)
Cyclohexane	10000	6900	6900	NA						
1,2-Dibromoethane	3.7	0.005	0.0013	NA						
Ethyl Benzene	880	70	46	ND (0.007)	0.004 J (0.007)	0.028 J (0.26)	ND (0.24)	0.064 J (0.38)	0.005 J (0.006)	0.0008 J (0.006)
Hexane	10000	5300	5300	NA						
Methyl tert-butyl ether	8500	2	1.4	0.001 J (0.007)	ND (0.007)	ND (0.26)	ND (0.24)	ND (0.38)	ND (0.006)	ND (0.006)
Toluene	10000	100	44	ND (0.007)	0.027 (0.007)	0.033 J (0.26)	0.088 J (0.24)	0.077 J (0.38)	0.035 (0.006)	0.001 J (0.006)
1,2,4-Trimethylbenzene	4700	300	300	ND (0.007)	0.024 (0.007)	ND (0.26)	ND (0.24)	0.19 J (0.38)	0.013 (0.006)	0.002 J (0.006)
1,3,5-Trimethylbenzene	4700	93	93	ND (0.007)	0.052 (0.007)	ND (0.26)	0.036 J (0.24)	0.055 J (0.38)	0.006 J (0.006)	ND (0.006)
Xylenes (total)	7900	1000	990	ND (0.015)	0.076 (0.014)	0.097 J (0.53)	0.14 J (0.48)	0.27 J (0.75)	0.036 (0.012)	0.003 J (0.012)
Semi-Volatile Organic Compounds										. ,
Acenaphthene	190000	4700		NA						
Anthracene	190000	350		NA						
Benzo(a)anthracene	130	340		NA						
Benzo(a)pyrene	91	46		NA						
Benzo(b)fluoranthene	76	170		NA						
Benzo(g,h,i)perylene	190000	180		NA						
Benzo(k)fluoranthene	76	610		NA						
1,1-Biphenyl	34	1.5	1.5	NA						
Chrysene	760	230		NA						
Dibenz(a,h)anthracene	22	270		NA						
Fluoranthene	130000	3200		NA						
Fluorene	130000	3800		NA						
Indeno(1,2,3-cd)pyrene	76	18000		NA						
2-Methylnaphthalene	240	100	100	NA						
4-Methylphenol	16000	49		NA						
Naphthalene	66	25	25	ND (0.007)	0.007 J (0.007)	ND (0.26)	ND (0.24)	0.57 (0.38)	0.007 (0.006)	0.002 J (0.006)
Phenanthrene	190000	10000		NA						
bis(2-Ethylhexyl)phthalate	6500	130		NA						
Pyrene	96000	2200		NA						
Metals										
Cobalt	960	130		NA						
Lead	1000	450		NA						
Nickel	64000	650		NA						
Vanadium	16000	49000		NA						
Zinc	190000	12000		NA						
Notos:	200000	12000								

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Location	Non-Residential	Non-Res Used	Non-Residential	A017-PE-09	AOI7-PE-10	AOI7-PE-11	A017-PE-12	AOI7-PE-21-01	AOI7-PE-21-02	AOI7-PE-21-03
Field Sample ID	Direct Contact	Aquifer	Vapor Intrusion	AOI7-PE-09-2019(2.5)	AOI7-PE-10-2019(2.5)	AOI7-PE-11-2019(4.0)	AOI7-PE-12-2019(3.5)	AOI7-PE-21-01-3.5-20211110	AOI7-PE-21-02-3.2-20211110	AOI7-PE-21-03-2.7-20211110
Sample Date	MSCs	(TDS ≤ 2500)	Screening Values	12/12/2019	12/12/2019	12/12/2019	12/12/2019	11/10/2021	11/10/2021	11/10/2021
Comments	Wi5C5	Soil-to-GW MSC	Screening values							
Volatile Organic Compounds										
Benzene	280	0.5	0.13	0.006 (0.005)	ND (0.006)	0.017 (0.007)	ND (0.26)	0.14 J (0.31)	0.077 J (0.4)	<u>0.93 (0.28)</u>
sec-Butylbenzene	10000	2300		NA	NA	NA	NA	3.7 (0.31)	0.51 (0.4)	0.56 (0.28)
tert-Butylbenzene	10000	1800		NA	NA	NA	NA	0.33 (0.31)	ND (0.4)	ND (0.28)
Cumene	10000	2500	2500	ND (0.005)	ND (0.006)	0.19 (0.007)	0.36 (0.26)	6.7 (0.31)	0.79 (0.4)	1.4 (0.28)
Cyclohexane	10000	6900		NA	NA	NA	NA	0.7 (0.31)	7 (0.4)	13 (0.28
1,2-Dibromoethane	3.7	0.005	0.0013	NA	NA	NA	NA	ND (0.0006)	ND,F2 (0.00064)	0.0022 (0.00055)
Ethyl Benzene	880	70	46	0.0007 J (0.005)	ND (0.006)	0.004 J (0.007)	ND (0.26)	0.044 J (0.31)	0.092 J (0.4)	0.28 (0.28)
Hexane	10000	5300	5300	NA	NA	NA	NA	0.051 J (0.31)	0.097 J (0.4)	11 (0.28)
Methyl tert-butyl ether	8500	2	1.4	ND (0.005)	0.0008 J (0.006)	ND (0.007)	ND (0.26)	ND (0.31)	ND (0.4)	ND (0.28)
Toluene	10000	100	44	0.008 (0.005)	ND (0.006)	0.032 (0.007)	0.022 J (0.26)	0.079 J (0.31)	0.23 J (0.4)	1.5 (0.28)
1,2,4-Trimethylbenzene	4700	300	300	0.002 J (0.005)	ND (0.006)	0.17 (0.007)	ND (0.26)	0.09 J (0.31)	1.8 (0.4)	9.4 (0.28)
1,3,5-Trimethylbenzene	4700	93	93	0.0008 J (0.005)	ND (0.006)	0.14 (0.007)	ND (0.26)	0.034 J (0.31)	0.57 (0.4)	2.3 (0.28)
Xylenes (total)	7900	1000	990	0.004 J (0.011)	ND (0.012)	0.042 (0.013)	ND (0.51)	0.41 J (0.62)	0.81 (0.8)	4.3 (0.57)
Semi-Volatile Organic Compounds										
Acenaphthene	190000	4700		NA	NA	NA	NA	4.5 F2 (1)	4.1 (1.1)	6.4 (0.95)
Anthracene	190000	350		NA	NA	NA	NA	11 (1)	11 (1.1)	11 (0.95)
Benzo(a)anthracene	130	340		NA	NA	NA	NA	9.4 (1)	21 (1.1)	6.2 (0.95)
Benzo(a)pyrene	91	46		NA	NA	NA	NA	10 (1)	28 (1.1)	5.4 (0.95)
Benzo(b)fluoranthene	76	170		NA	NA	NA	NA	8.6 B (1)	27 B (1.1)	3.5 B (0.95)
Benzo(g,h,i)perylene	190000	180		NA	NA	NA	NA	5.7 B (1)	16 B (1.1)	2.6 B (0.95)
Benzo(k)fluoranthene	76	610		NA	NA	NA	NA	2.9 F2 (1)	9.1 (1.1)	ND (0.95
1,1-Biphenyl	34	1.5	1.5	NA	NA	NA	NA	ND (2.3)	<u>1.7 J (2.4)</u>	ND (2.1)
Chrysene	760	230		NA	NA	NA	NA	13 (1)	24 (1.1)	12 (0.95)
Dibenz(a,h)anthracene	22	270		NA	NA	NA	NA	2.3 (1)	5.9 (1.1)	ND (0.95)
Fluoranthene	130000	3200		NA	NA	NA	NA	13 (1)	27 (1.1)	6.9 (0.95)
Fluorene	130000	3800		NA	NA	NA	NA	9.7 (1)	7 (1.1)	11 (0.95)
Indeno(1,2,3-cd)pyrene	76	18000		NA	NA	NA	NA	4.7 (1)	15 (1.1)	1.9 (0.95)
2-Methylnaphthalene	240	100	100	NA	NA	NA	NA	2.5 (1)	7.3 (1.1)	59 (0.95)
4-Methylphenol	16000	49		NA	NA	NA	NA	ND (3.1)	ND (3.2)	ND (2.9)
Naphthalene	66	25	25	0.003 J (0.005)	0.0008 J (0.006)	0.004 J (0.007)	ND (0.26)	6.3 F2 (1)	23 (1.1)	4.3 (0.95)
Phenanthrene	190000	10000		NA	NA	NA	NA	18 (1)	19 (1.1)	41 (0.95)
bis(2-Ethylhexyl)phthalate	6500	130		NA	NA	NA	NA	ND (10)	ND (11)	ND (9.5
Pyrene	96000	2200		NA	NA	NA	NA	25 (1)	29 (1.1)	23 (0.95)
Metals										
Cobalt	960	130		NA	NA	NA	NA	6.8 (0.46)	13 (0.64)	11 (0.41)
Lead	1000	450		NA	NA	NA	NA	54 (1.4)	410 (1.9)	<u>590 (1.2</u>
Nickel	64000	650		NA	NA	NA	NA	54 (0.93)	120 (1.3)	63 (0.81)
Vanadium	16000	49000		NA	NA	NA	NA	35 (0.93)	100 (1.3)	140 (0.81)
Zinc	190000	12000		NA	NA	NA	NA	190 (1.9)	260 (2.5)	180 (1.6)

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Location	Non-Residential	Non-Res Used	Non-Residential	AOI7-PE-21-04	AOI7-PE-21-05	AOI7-BH-21-01	AOI7-BH-21-02	AOI7-BH-21-03	AOI7-BH-21-04	AOI7-BH-21-05
Field Sample ID	Direct Contact	Aquifer	Vapor Intrusion	AOI7-PE-21-04-3.5-20211110	AOI7-PE-21-05-2.8-20211110	AOI7-BH-21-01(0-2)	AOI7-BH-21-02(3.0-3.5)	AOI7-BH-21-03(0-2)	AOI7-BH-21-04(2-3)	AOI7-BH-21-05(0-2)
Sample Date	MSCs	(TDS ≤ 2500)	Screening Values	11/10/2021	11/10/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021
Comments	IVISCS	Soil-to-GW MSC	Screening values							
Volatile Organic Compounds										
Benzene	280	0.5	0.13	0.28 (0.28)	0.053 J (0.28)	ND (0.0056)	0.33 (0.32)	0.13 J,IQ (0.22)	0.053 J,IQ (0.28)	ND,IQ (0.32)
sec-Butylbenzene	10000	2300		0.49 (0.28)	0.12 J (0.28)	ND (0.0056)	0.96 (0.32)	0.23 IQ (0.22)	0.78 IQ (0.28)	ND,IQ (0.32)
tert-Butylbenzene	10000	1800		ND (0.28)	ND (0.28)	ND (0.0056)	0.31 J (0.32)	0.099 J,IQ (0.22)	0.24 J,IQ (0.28)	ND,IQ (0.32)
Cumene	10000	2500	2500	2.2 (0.28)	0.13 J (0.28)	ND (0.0056)	1.1 (0.32)	0.29 IQ (0.22)	0.91 IQ (0.28)	ND,IQ (0.32)
Cyclohexane	10000	6900	6900	15 (0.28)	0.29 (0.28)	0.059 (0.0056)	ND (0.32)	0.027 J,IQ (0.22)	0.079 J,IQ (0.28)	ND,IQ (0.32)
1,2-Dibromoethane	3.7	0.005	0.0013	0.0022 (0.00058)	ND (0.00058)	ND,IQ (0.00052)	ND,IQ (0.00059)	ND,IQ (0.00052)	ND,IQ (0.00057)	ND,IQ (0.0006)
Ethyl Benzene	880	70	46	0.16 J (0.28)	ND (0.28)	ND (0.0056)	0.35 (0.32)	0.03 J,IQ (0.22)	0.043 J,IQ (0.28)	ND,IQ (0.32)
Hexane	10000	5300	5300	2.1 (0.28)	0.1 J (0.28)	0.012 (0.0056)	0.13 J (0.32)	0.027 J,IQ (0.22)	ND,IQ (0.28)	ND,IQ (0.32)
Methyl tert-butyl ether	8500	2	1.4	ND (0.28)	ND (0.28)	ND (0.0056)	ND (0.32)	ND,IQ (0.22)	ND,IQ (0.28)	ND,IQ (0.32)
Toluene	10000	100	44	0.24 J (0.28)	ND (0.28)	ND (0.0056)	0.32 (0.32)	0.068 J,IQ (0.22)	0.11 J,IQ (0.28)	ND,IQ (0.32)
1,2,4-Trimethylbenzene	4700	300	300	4.4 (0.28)	0.099 J (0.28)	ND (0.0056)	0.15 J (0.32)	0.05 J,IQ (0.22)	0.073 J,IQ (0.28)	ND,IQ (0.32)
1,3,5-Trimethylbenzene	4700	93	93	1.2 (0.28)	0.035 J (0.28)	ND (0.0056)	0.056 J (0.32)	ND,IQ (0.22)	ND,IQ (0.28)	ND,IQ (0.32)
Xylenes (total)	7900	1000	990	2.2 (0.56)	0.098 J (0.56)	ND (0.011)	1.4 (0.65)	0.18 J,IQ (0.44)	0.29 J,IQ (0.55)	ND,IQ (0.65)
Semi-Volatile Organic Compounds										
Acenaphthene	190000	4700		6 (0.99)	0.51 (0.39)	0.087 B,IQ (0.018)	1 B,IQ (0.02)	0.33 B,IQ (0.018)	1.2 B,IQ (0.02)	ND,IQ (0.021)
Anthracene	190000	350		9.7 (0.99)	1.7 (0.39)	0.19 B,IQ (0.018)	1.8 B,IQ (0.02)	0.47 B,IQ (0.018)	1.9 B,IQ (0.02)	0.16 B,IQ (0.021)
Benzo(a)anthracene	130	340		6.7 (0.99)	0.92 (0.39)	0.29 B,IQ (0.018)	1.2 B,IQ (0.02)	0.26 B,IQ (0.018)	2.3 B,IQ (0.02)	ND,IQ (0.021)
Benzo(a)pyrene	91	46		5.1 (0.99)	0.6 (0.39)	0.38 B,IQ (0.018)	1.3 B,IQ (0.02)	0.33 B,IQ (0.018)	2.5 B,IQ (0.02)	0.37 B,IQ (0.021)
Benzo(b)fluoranthene	76	170		4.8 B (0.99)	0.53 B (0.39)	0.3 B,IQ (0.018)	1.3 B,IQ (0.02)	0.3 B,IQ (0.018)	2.2 B,IQ (0.02)	0.18 B,IQ (0.021)
Benzo(g,h,i)perylene	190000	180		3.6 B (0.99)	0.44 B (0.39)	0.39 B,IQ (0.018)	0.71 B,IQ (0.02)	0.26 B,IQ (0.018)	1.2 B,IQ (0.02)	0.62 B,IQ (0.021)
Benzo(k)fluoranthene	76	610		1.5 (0.99)	ND (0.39)	0.081 B,IQ (0.018)	0.38 B,IQ (0.02)	0.13 B,IQ (0.018)	0.96 B,IQ (0.02)	0.077 B,IQ (0.021)
1,1-Biphenyl	34	1.5	1.5	ND (2.2)	ND (0.86)	0.044 IQ (0.039)	ND,IQ (0.044)	ND,IQ (0.04)	0.18 IQ (0.043)	ND,IQ (0.046)
Chrysene	760	230		11 (0.99)	1.5 (0.39)	1 B,IQ (0.018)	1.3 B,IQ (0.02)	0.49 B,IQ (0.018)	2.3 B,IQ (0.02)	0.36 B,IQ (0.021)
Dibenz(a,h)anthracene	22	270		ND (0.99)	ND (0.39)	0.12 B,IQ (0.018)	0.25 B,IQ (0.02)	0.1 B,IQ (0.018)	0.45 B,IQ (0.02)	0.12 B,IQ (0.021)
Fluoranthene	130000	3200		8.3 (0.99)	1 (0.39)	0.19 B,IQ (0.018)	2.6 B,IQ (0.02)	0.38 B,IQ (0.018)	4.7 B,IQ (0.02)	0.14 B,IQ (0.021)
Fluorene	130000	3800		11 (0.99)	1.4 (0.39)	0.2 B,IQ (0.018)	1.6 B,IQ (0.02)	0.51 B,IQ (0.018)	1.3 B,IQ (0.02)	ND,IQ (0.021)
Indeno(1,2,3-cd)pyrene	76	18000		2.7 (0.99)	0.35 J (0.39)	0.18 B,IQ (0.018)	0.61 B,IQ (0.02)	0.24 B,IQ (0.018)	1.1 B,IQ (0.02)	0.28 B,IQ (0.021)
2-Methylnaphthalene	240	100	100	24 (0.99)	2.8 (0.39)	0.2 IQ (0.018)	0.53 IQ (0.02)	0.33 IQ (0.018)	2.1 IQ (0.02)	0.12 IQ (0.021)
4-Methylphenol	16000	49		ND (3)	ND (1.2)	ND,IQ (0.053)	ND,IQ (0.061)	ND,IQ (0.054)	ND,IQ (0.059)	0.057 J,IQ (0.062)
Naphthalene	66	25	25	4.8 (0.99)	0.22 J (0.39)	0.055 IQ (0.018)	0.43 IQ (0.02)	0.19 IQ (0.018)	2 IQ (0.02)	0.084 IQ (0.021)
Phenanthrene	190000	10000		34 (0.99)	5.7 (0.39)	0.25 B,IQ (0.018)	5.3 B,IQ (0.1)	0.49 B,IQ (0.018)	5.2 B,IQ (0.098)	0.13 B,IQ (0.021)
bis(2-Ethylhexyl)phthalate	6500	130		ND (9.9)	ND (3.9)	ND,IQ (0.18)	0.091 J,IQ (0.2)	0.11 J,IQ (0.18)	ND,IQ (0.2)	ND,IQ (0.21)
Pyrene	96000	2200		20 (0.99)	3.7 (0.39)	0.91 B,IQ (0.018)	2.8 B,IQ (0.02)	0.64 B,IQ (0.018)	4.4 B,IQ (0.02)	0.19 B,IQ (0.021)
Metals				. ,		· · · /	· · ·		· · ·	,
Cobalt	960	130		7.1 (0.58)	7.4 (0.51)	4.5 F2 (0.47)	6.3 (0.44)	13 (0.46)	7.2 (0.42)	15 (0.47)
Lead	1000			190 (1.7)	25 (1.5)	130 (1.4)	140 (1.3)	180 (1.4)	110 (1.3)	200 (1.4)
Nickel	64000			29 (1.2)	14 (1)	21 F2 (0.93)	44 (0.87)	56 (0.93)	19 (0.85)	44 (0.93)
Vanadium	16000			59 (1.2)	52 (1)	37 F2 (0.93)	190 (0.87)	410 (0.93)	48 (0.85)	79 (0.93)
Zinc	190000			56 (2.3)	48 (2)	230 (1.9)	95 (1.7)	300 (1.9)	120 (1.7)	350 (1.9)
Notes:				()	- \ /				- \ /	

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Table B-1 Summary of Historical Soil Analytical Results 136 Naphtha Release Area

Bellwether District Holdings, LLC, Philadelphia, PA

Location	Non-Residential	Non-Res Used	Non-Residential	AOI7-BH-21-07	AOI7-BH-21-09	AOI7-BH-21-10	AOI7-BH-21-11	AOI7-BH-21-12	AOI7-BH-21-14
Field Sample ID	Direct Contact	Aquifer		AOI7-BH-21-07(0-2)	AOI7-BH-21-09	AOI7-BH-21-10	AOI7-BH-21-11	AOI7-BH-21-12	AOI7-BH-21-14
Sample Date	MSCs	(TDS ≤ 2500)	Vapor Intrusion	11/30/2021			1/18/2022	1/18/2022	
Comments	IVISCS	Soil-to-GW MSC	Screening Values						
Volatile Organic Compounds									
Benzene	280	0.5	0.13	0.14 J,IQ (0.29)	NA	NA	NA	NA	NA
sec-Butylbenzene	10000	2300		ND,IQ (0.29)	NA	NA	NA	NA	NA
tert-Butylbenzene	10000	1800		ND,IQ (0.29)	NA	NA	NA	NA	NA
Cumene	10000	2500	2500	0.053 J,IQ (0.29)	NA	NA	NA	NA	NA
Cyclohexane	10000	6900	6900	0.08 J,IQ (0.29)	NA	NA	NA	NA	NA
1,2-Dibromoethane	3.7	0.005	0.0013	ND,IQ (0.00058)	NA	NA	NA	NA	NA
Ethyl Benzene	880	70	46	0.097 J,IQ (0.29)	NA	NA	NA	NA	NA
Hexane	10000	5300	5300	ND,IQ (0.29)	NA	NA	NA	NA	NA
Methyl tert-butyl ether	8500	2	1.4	ND,IQ (0.29)	NA	NA	NA	NA	NA
Toluene	10000	100	44	0.04 J,IQ (0.29)	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	4700	300	300	0.12 J,IQ (0.29)	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene	4700	93	93	0.044 J,IQ (0.29)	NA	NA	NA	NA	NA
Xylenes (total)	7900	1000	990	0.56 J,IQ (0.58)	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds									
Acenaphthene	190000	4700		ND (0.19)	NA	NA	NA	NA	NA
Anthracene	190000	350		0.083 J (0.19)	NA	NA	NA	NA	NA
Benzo(a)anthracene	130	340		0.28 (0.19)	NA	NA	NA	NA	NA
Benzo(a)pyrene	91	46		0.31 (0.19)	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	76	170		0.35 (0.19)	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	190000	180		0.23 (0.19)	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	76	610		0.13 J (0.19)	NA	NA	NA	NA	NA
1,1-Biphenyl	34	1.5	1.5	ND (0.42)	NA	NA	NA	NA	NA
Chrysene	760	230		0.35 (0.19)	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	22	270		ND (0.19)	NA	NA	NA	NA	NA
Fluoranthene	130000	3200		0.59 (0.19)	NA	NA	NA	NA	NA
Fluorene	130000	3800		0.041 J (0.19)	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	76	18000		0.21 (0.19)	NA	NA	NA	NA	NA
2-Methylnaphthalene	240	100		0.079 J (0.19)	NA	NA	NA	NA	NA
4-Methylphenol	16000	49		ND (0.58)	NA	NA	NA	NA	NA
Naphthalene	66	25		ND (0.19)	NA	NA	NA	NA	NA
Phenanthrene	190000	10000		0.41 (0.19)	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	6500	130		ND (1.9)	NA	NA	NA	NA	NA
Pyrene	96000	2200		0.52 (0.19)	NA	NA	NA	NA	NA
, Metals				· · · ·					
Cobalt	960	130		8.6 (0.41)	NA	NA	NA	NA	NA
Lead	1000	450		300 (1.2)	NA	NA	NA	NA	NA
Nickel	64000	650		84 (0.82)	NA	NA	NA	NA	NA
Vanadium	16000	49000		590 (0.82)	173 (53.9)	33.8 (5.4)	2190 (54.8)	145 (7.1)	144 (6.3)
Zinc		12000		940 (8.2)	NA	NA	NA	NA	NA
Notes:	200000	12000		5.5 (5.2)					

Notes:

1 All concentrations reported in mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

3 No concentrations exceed the Non-Residential Direct Contact MSCs.

4 Underlined concentrations exceed the Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW

5 Italicized concentrations exceed the Non-Residential Vapor Intrusion Screening Values.

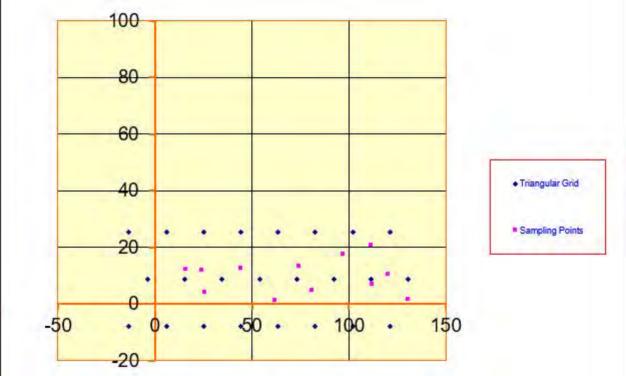
Abbreviations:

ND - Not Detected

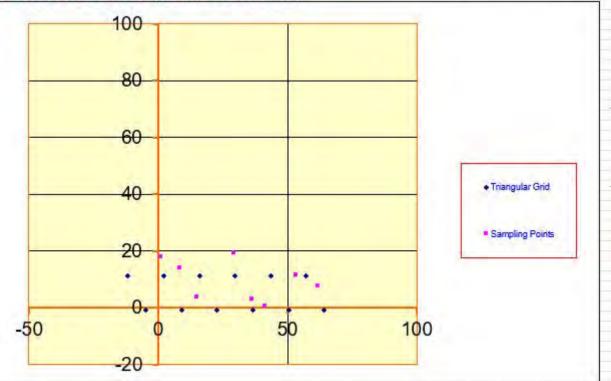
NA - Not Analyzed

Appendix C

Systematic Random Sampling Grid


1	0th Row	1st Row	2nd Row	3rd Row
	(Xi, Yi)	(Xi, Yi)	(Xi, Yi)	(Xi, Yi)
tarting Point>	-3.7 8.7 15.5 8.7 34.7 8.7 53.9 8.7 73.1 8.7 92.3 8.7 111.5 8.7	-13.3 25.3 5.9 25.3 25.1 25.3 44.3 25.3 63.5 25.3 82.7 25.3 101.9 25.3 121.1 25.3		
Ba	ck to DataInput Page	-1st Row (Xi, Yi)	-2nd Row (Xi, Yi)	-3rd Row (Xi, Yi)
Gc 3-1	o to the Summary Page of the D Sampling Point Coordinates	-13.3 -7.9 5.9 -7.9 25.1 -7.9 44.3 -7.9 63.5 -7.9 82.7 -7.9 101.9 -7.9 121.1 -7.9		
Got	o the Graphic Page			

Datalaput XI.Yi SamplingPoints Graphic Grid About +


1

- M D. 6 D. E r u n 191 -1 M u. Coordinates of 3-D Systematic Random Sampling Points
Note: Sampling points that are not within the area of contamination should be discarded. You will need to generate another group of data sets if the number of valid data sets in a group is less than the minim

Xi, Yi Zi 16.1 12.3 2.6 24.3 12.0 2.2 44.4 12.7 1.8 74.4 13.5 4.5 97.0 17.6 0.8 111.3 20.6 5.3 120.3 10.4 3.8 Back to DataInput Page Page	Xi, Yi Zi	Xi, Yi Zi	Xi, Yi Zi	Xi, Yi Zi
Back to DataInput	-ist Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
Back to DataInput	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
Back to DataInput	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
Back to DataInput	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
Back to DataInput	- Ist Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
Back to DataInput	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi	- 3rd Row Xi, Yi Zi	
	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi		
	-1st Row Xi, Yi Zi	-2nd Row Xi, Yi Zi	-3rd Row Xi, Yi Zi	
	Xi, Yi Zi	Xi, Yi Zi	Xi, Yi Zi	
Go to the Summary	26.0 4.0 5.	t		
Page of the	61.8 1.3 2. 81.2 5.0 4.	5		
Page of the Triangular Grid Node Coordinates	81.2 5.0 4.	3		
Coordinates	112.0 7.0 3.	5		
Copromates	130.6 1.6 3.	1		
the second second				
Go to the Graphic Page				

C D E F	G H I J K	KLMNO	PQ R S T	UVW XYZ
ode Coordinate Pairs				
Off David	Let Day	2nd David	2rd Davi	(th Dave
				4th Bow (Xi, Yi)
(0	(05, 11)	101.117	(05, 19	(01. 11)
-11.7 11.3				
2.1 11.3				
15.3 11.3 29.7 11.3				
435 11.3				
57.3 11.3				
	-ist Row	-2nd Row	-3rd How	-4th Row (Xi, Yi)
k to Dotoloput	[0, 1]	[/1, 11]	(((, ())))	
Page				
and the Designation				
to the Summary	-4.8 -0.7			
Page of the	9 -0.7			
Sampling Point	22.8 -0.7			
Coordinates	504 -0.7			
ooordinates	64.2 -0.7			
the Graphic Page				
the Graphic Fage				
	0th Bow (Xi, Yi) -11.7 11.3 2.1 11.3 15.9 11.3 29.7 11.3 43.5 11.3	0th Row (xi. Yi) 1st Row (xi. Yi) -11.7 11.3 21 11.3 25 11.3 28.7 11.3 35.5 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.3 11.3 57.4 11.5 57.5 11.3 57.6 11.3 57.7 11.3 57.7 11.3 57.7 11.3 57.7 11.3 57.7 11.3 57.7 11.3 57.7 11.3 <tr< td=""><td>0th Row 1st Row 2nd Row (\$\$i, Yi) (\$\$i, Yi) (\$\$i, Yi) -117 113 13 159 113 13 29.7 113 13 29.7 113 14 29.7 113 14 29.7 113 14 29.7 113 14 29.7 113 14 10.9 15t Row (\$\$i, Yi] (\$\$i, Yi] (\$\$i, Yi] to the Summary 4.8 0.7 Sampling Point 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 <</td><td>Wh Rew (xi, Yi) Ist Rew (xi, Yi) 2nd Rew (xi, Yi) 3id Rew (xi, Yi) -117 113 </td></tr<>	0th Row 1st Row 2nd Row (\$\$i, Yi) (\$\$i, Yi) (\$\$i, Yi) -117 113 13 159 113 13 29.7 113 13 29.7 113 14 29.7 113 14 29.7 113 14 29.7 113 14 29.7 113 14 10.9 15t Row (\$\$i, Yi] (\$\$i, Yi] (\$\$i, Yi] to the Summary 4.8 0.7 Sampling Point 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 564 0.7 <	Wh Rew (xi, Yi) Ist Rew (xi, Yi) 2nd Rew (xi, Yi) 3id Rew (xi, Yi) -117 113

ming points	that are no	ot within	the area of c	ontamina	tion sho	uld be d	liscarded.	You	vill need	to gene	erate an	other gro	oup of d	lata se	ts if the i	number	of valid data s	ets in a g	roup is l	ess
	Oth Row				1st Row					2nd Row					3rd Row	1			4th Row	-
		21				21			А1,		21			×1,	-	21				
0. 8. 23. 53	4 14.1 2 19.3	1.9 4.9 5.2 5.9																		
Back	to Dat Page		ıt	Xi,	-1st Row Yi	Zi			Xi,	-2nd Row Yi	Zi			Xi,	- 3rd Row Yi	Zi		Xi,	-4th Row Yi	
Trian	o the Su Page of t gular Gri Coordina	he d Node		14.9 36.3 41.1 61.3	3.6 3.0 0.5 7.7	4.0 5.9														
		hic Pag																		

Appendix D

Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L2428914
Client:	Terraphase Engineering Inc.
	1100 East Hector Street
	Suite 400
	Conshohocken, PA 19428
ATTN:	Alexander Strohl
Phone:	(215) 297-3502
Project Name:	PESRM
Project Number:	P044.001.006
Report Date:	06/03/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab Number:	L2428914
Report Date:	06/03/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2428914-01	136N-SB06-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 16:15	05/23/24
L2428914-02	136N-SB08-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 16:00	05/23/24
L2428914-03	136N-SB05-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 15:45	05/23/24
L2428914-04	136N-SB03-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 15:20	05/23/24
L2428914-05	136N-SB04-3.5-4.0	SOIL	3144 W.PASSYUNK AVE.	05/23/24 14:40	05/23/24
L2428914-06	136N-SB01-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 14:10	05/23/24
L2428914-07	136N-SB01-1.0-1.5D	SOIL	3144 W.PASSYUNK AVE.	05/23/24 14:10	05/23/24
L2428914-08	136N-SB20-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	05/23/24 13:30	05/23/24
L2428914-09	136N-SB19-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	05/23/24 13:20	05/23/24
L2428914-10	136N-SB14-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	05/23/24 12:35	05/23/24
L2428914-11	136N-SB10-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 12:13	05/23/24
L2428914-12	136N-SB02-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 10:05	05/23/24
L2428914-13	136N-SB09-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	05/23/24 11:30	05/23/24
L2428914-14	136N-SB07-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	05/23/24 11:36	05/23/24
L2428914-15	TB-240523	WATER	3144 W.PASSYUNK AVE.	05/23/24 00:00	05/23/24
L2428914-16	FB-240523	WATER	3144 W.PASSYUNK AVE.	05/23/24 16:30	05/23/24

Project Name: PESRM Project Number: P044.001.006
 Lab Number:
 L2428914

 Report Date:
 06/03/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: PESRM Project Number: P044.001.006

 Lab Number:
 L2428914

 Report Date:
 06/03/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2428914-04: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (339%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2428914-12: The internal standard (IS) response(s) for 1,4-dichlorobenzene-d4 (24%) and the surrogate recovery for toluene-d8 (131%) and 4-bromofluorobenzene (624%) were outside the acceptance criteria due to obvious interferences. A copy of the chromatogram is included as an attachment to this report. Since the IS response was below method criteria, all associated compounds are considered to have a potentially highbias. A high-level analysis was performed, and those results are also reported.

L2428914-13: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (282%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2428914-14: The surrogate recovery is outside the acceptance criteria for toluene-d8 (190%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Semivolatile Organics

L2428914-06D and -07D: The sample has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix.

L2428914-06D and -07D: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

L2428914-06D: The surrogate recoveries are below the acceptance criteria for nitrobenzene-d5 (0%), 2-

Project Name:PESRMProject Number:P044.001.006

 Lab Number:
 L2428914

 Report Date:
 06/03/24

Case Narrative (continued)

fluorobiphenyl (0%) and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Reextraction was not required; therefore, the results of the original analysis are reported. L2428914-09D and -11D: The sample has elevated detection limits due to the dilution required by the sample matrix.

Semivolatile Organics by SIM

The WG1927316-2/-3 LCS/LCSD recoveries, associated with L2428914-16, were outside the acceptance criteria for individual target compounds; however, the criteria were achieved upon re-extraction outside of holding time. The results of both extractions are reported; however, all results are considered to have a potentially low bias for naphthalene (31%/31%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 06/03/24

ORGANICS

VOLATILES

		Serial_No	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-01	Date Collected:	05/23/24 16:15
Client ID:	136N-SB06-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/28/24 21:55		
Analyst:	AJK		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by EPA 5035 Low - Westborough Lab									
Methyl tert butyl ether	ND		mg/kg	0.0019	0.00019	1			
Benzene	0.0080		mg/kg	0.00047	0.00016	1			
Toluene	0.00074	J	mg/kg	0.00094	0.00051	1			
Ethylbenzene	0.0020		mg/kg	0.00094	0.00013	1			
p/m-Xylene	0.021		mg/kg	0.0019	0.00052	1			
o-Xylene	0.00032	J	mg/kg	0.00094	0.00027	1			
Xylenes, Total	0.021	J	mg/kg	0.00094	0.00027	1			
Isopropylbenzene	0.0082		mg/kg	0.00094	0.00010	1			
1,3,5-Trimethylbenzene	0.0031		mg/kg	0.0019	0.00018	1			
1,2,4-Trimethylbenzene	0.0064		mg/kg	0.0019	0.00031	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	92	70-130	

		Serial_N	p:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-02	Date Collected:	05/23/24 16:00
Client ID:	136N-SB08-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/25/24 14:49 TMH 91%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1		
Benzene	ND		mg/kg	0.00051	0.00017	1		
Toluene	ND		mg/kg	0.0010	0.00055	1		
Ethylbenzene	ND		mg/kg	0.0010	0.00014	1		
p/m-Xylene	ND		mg/kg	0.0020	0.00057	1		
o-Xylene	ND		mg/kg	0.0010	0.00030	1		
Xylenes, Total	ND		mg/kg	0.0010	0.00030	1		
Isopropylbenzene	ND		mg/kg	0.0010	0.00011	1		
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00020	1		
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00034	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	108	70-130	

		Serial_No:06032415:47	
Project Name:	PESRM	Lab Number: L2428914	
Project Number:	P044.001.006	Report Date: 06/03/24	
	SAMPLE RESULTS		
Lab ID:	L2428914-03	Date Collected: 05/23/24 15:45	
Client ID:	136N-SB05-2.0-2.5	Date Received: 05/23/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified	
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 15:15		
Analyst:	ТМН		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1	
Benzene	ND		mg/kg	0.00050	0.00016	1	
Toluene	ND		mg/kg	0.00099	0.00054	1	
Ethylbenzene	ND		mg/kg	0.00099	0.00014	1	
p/m-Xylene	ND		mg/kg	0.0020	0.00055	1	
o-Xylene	ND		mg/kg	0.00099	0.00029	1	
Xylenes, Total	ND		mg/kg	0.00099	0.00029	1	
Isopropylbenzene	ND		mg/kg	0.00099	0.00011	1	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00019	1	
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00033	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	101	70-130	

		Serial_No:06032415:47	
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-04	Date Collected:	05/23/24 15:20
Client ID:	136N-SB03-3.0-3.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 15:40		
Analyst:	ТМН		
Percent Solids:	88%		

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 Low - Westborough Lab								
ND		mg/kg	0.0017	0.00017	1			
0.0032		mg/kg	0.00042	0.00014	1			
0.0031		mg/kg	0.00083	0.00045	1			
0.0015		mg/kg	0.00083	0.00012	1			
0.0062		mg/kg	0.0017	0.00047	1			
0.016		mg/kg	0.00083	0.00024	1			
0.022		mg/kg	0.00083	0.00024	1			
0.016		mg/kg	0.00083	0.00009	1			
0.014		mg/kg	0.0017	0.00016	1			
0.049		mg/kg	0.0017	0.00028	1			
	Westborough Lab ND 0.0032 0.0031 0.0015 0.0062 0.016 0.022 0.016 0.016 0.014	ND 0.0032 0.0031 0.0015 0.0062 0.016 0.022 0.016 0.016 0.014	ND mg/kg 0.0032 mg/kg 0.0031 mg/kg 0.0015 mg/kg 0.0062 mg/kg 0.016 mg/kg 0.016 mg/kg 0.016 mg/kg 0.016 mg/kg 0.016 mg/kg 0.014 mg/kg	ND mg/kg 0.0017 0.0032 mg/kg 0.00042 0.0031 mg/kg 0.00083 0.0015 mg/kg 0.00083 0.0062 mg/kg 0.0017 0.016 mg/kg 0.00083 0.016 mg/kg 0.00083 0.016 mg/kg 0.00083 0.016 mg/kg 0.00083 0.014 mg/kg 0.0017	ND mg/kg 0.0017 0.00017 0.0032 mg/kg 0.00042 0.00014 0.0031 mg/kg 0.00083 0.00045 0.0015 mg/kg 0.0017 0.00047 0.0062 mg/kg 0.0017 0.00047 0.016 mg/kg 0.00083 0.00024 0.016 mg/kg 0.00083 0.00024 0.016 mg/kg 0.00083 0.00091 0.014 mg/kg 0.0017 0.00016			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	121		70-130	
4-Bromofluorobenzene	339	Q	70-130	
Dibromofluoromethane	92		70-130	

		Serial_No:06032415:47	
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-05	Date Collected:	05/23/24 14:40
Client ID:	136N-SB04-3.5-4.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/25/24 16:05 TMH 85%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
Methyl tert butyl ether	ND		mg/kg	0.0016	0.00016	1		
Benzene	ND		mg/kg	0.00041	0.00014	1		
Toluene	ND		mg/kg	0.00082	0.00045	1		
Ethylbenzene	ND		mg/kg	0.00082	0.00012	1		
p/m-Xylene	ND		mg/kg	0.0016	0.00046	1		
o-Xylene	ND		mg/kg	0.00082	0.00024	1		
Xylenes, Total	ND		mg/kg	0.00082	0.00024	1		
Isopropylbenzene	0.00016	J	mg/kg	0.00082	0.00009	1		
1,3,5-Trimethylbenzene	ND		mg/kg	0.0016	0.00016	1		
1,2,4-Trimethylbenzene	ND		mg/kg	0.0016	0.00028	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	103	70-130	

		Serial_No	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-06	Date Collected:	05/23/24 14:10
Client ID:	136N-SB01-1.0-1.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 16:30		
Analyst:	ТМН		
Percent Solids:	79%		

Result	Qualifier	Units	RL	MDL	Dilution Factor
estborough Lab					
ND		mg/kg	0.0026	0.00026	1
ND		mg/kg	0.00066	0.00022	1
ND		mg/kg	0.0013	0.00072	1
ND		mg/kg	0.0013	0.00019	1
ND		mg/kg	0.0026	0.00074	1
ND		mg/kg	0.0013	0.00038	1
ND		mg/kg	0.0013	0.00038	1
ND		mg/kg	0.0013	0.00014	1
ND		mg/kg	0.0026	0.00026	1
ND		mg/kg	0.0026	0.00044	1
	restborough Lab ND ND ND ND ND ND ND ND ND ND ND ND	Yestborough Lab ND ND ND ND ND ND ND ND ND ND ND ND	ND mg/kg ND mg/kg	ND mg/kg 0.0026 ND mg/kg 0.00066 ND mg/kg 0.0013 ND mg/kg 0.0013 ND mg/kg 0.0013 ND mg/kg 0.0026 ND mg/kg 0.0013 ND mg/kg 0.0013	ND mg/kg 0.0026 0.00026 ND mg/kg 0.00066 0.00022 ND mg/kg 0.0013 0.00072 ND mg/kg 0.0013 0.00019 ND mg/kg 0.0013 0.00074 ND mg/kg 0.0013 0.00019 ND mg/kg 0.0013 0.00038 ND mg/kg 0.0013 0.00038

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	104	70-130	

		Serial_N	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-07	Date Collected:	05/23/24 14:10
Client ID:	136N-SB01-1.0-1.5D	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 16:56		
Analyst:	ТМН		
Percent Solids:	78%		

Lead and a later							
Volatile Organics by EPA 5035 Low - Westborough Lab							
ND		mg/kg	0.0028	0.00028	1		
ND		mg/kg	0.00069	0.00023	1		
ND		mg/kg	0.0014	0.00075	1		
ND		mg/kg	0.0014	0.00019	1		
ND		mg/kg	0.0028	0.00077	1		
ND		mg/kg	0.0014	0.00040	1		
ND		mg/kg	0.0014	0.00040	1		
ND		mg/kg	0.0014	0.00015	1		
ND		mg/kg	0.0028	0.00027	1		
ND		mg/kg	0.0028	0.00046	1		
	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	NDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kg	ND mg/kg 0.0028 ND mg/kg 0.00069 ND mg/kg 0.0014 ND mg/kg 0.0014	ND mg/kg 0.0028 0.00028 ND mg/kg 0.00069 0.00023 ND mg/kg 0.0014 0.00075 ND mg/kg 0.0014 0.00019 ND mg/kg 0.0028 0.00077 ND mg/kg 0.0014 0.00040 ND mg/kg 0.0014 0.00040		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	104	70-130	

		Serial_No	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-08	Date Collected:	05/23/24 13:30
Client ID:	136N-SB20-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/25/24 17:21 TMH 87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0018	0.00019	1	
Benzene	0.00046		mg/kg	0.00046	0.00015	1	
Toluene	ND		mg/kg	0.00093	0.00050	1	
Ethylbenzene	ND		mg/kg	0.00093	0.00013	1	
p/m-Xylene	ND		mg/kg	0.0018	0.00052	1	
o-Xylene	ND		mg/kg	0.00093	0.00027	1	
Xylenes, Total	ND		mg/kg	0.00093	0.00027	1	
Isopropylbenzene	ND		mg/kg	0.00093	0.00010	1	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0018	0.00018	1	
1,2,4-Trimethylbenzene	ND		mg/kg	0.0018	0.00031	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

		Serial_No	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESU	LTS	
Lab ID:	L2428914-09	Date Collected:	05/23/24 13:20
Client ID:	136N-SB19-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 17:46		
Analyst:	ТМН		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0019	0.00019	1	
Benzene	ND		mg/kg	0.00048	0.00016	1	
Toluene	ND		mg/kg	0.00095	0.00052	1	
Ethylbenzene	ND		mg/kg	0.00095	0.00013	1	
p/m-Xylene	ND		mg/kg	0.0019	0.00053	1	
o-Xylene	ND		mg/kg	0.00095	0.00028	1	
Xylenes, Total	ND		mg/kg	0.00095	0.00028	1	
Isopropylbenzene	ND		mg/kg	0.00095	0.00010	1	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0019	0.00018	1	
1,2,4-Trimethylbenzene	ND		mg/kg	0.0019	0.00032	1	
	ND		mg/kg	0.0013	0.00032	I	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

		Serial_No:06032415:47
Project Name:	PESRM	Lab Number: L2428914
Project Number:	P044.001.006	Report Date: 06/03/24
	SAMPLE RESULT	rs
Lab ID: Client ID: Sample Location:	L2428914-10 136N-SB14-2.5-3.0 3144 W.PASSYUNK AVE.	Date Collected:05/23/24 12:35Date Received:05/23/24Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/25/24 18:12 TMH 86%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0018	0.00018	1	
Benzene	0.018		mg/kg	0.00046	0.00015	1	
Toluene	ND		mg/kg	0.00092	0.00050	1	
Ethylbenzene	0.00058	J	mg/kg	0.00092	0.00013	1	
p/m-Xylene	0.0017	J	mg/kg	0.0018	0.00052	1	
o-Xylene	0.00063	J	mg/kg	0.00092	0.00027	1	
Xylenes, Total	0.0023	J	mg/kg	0.00092	0.00027	1	
Isopropylbenzene	0.0018		mg/kg	0.00092	0.00010	1	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0018	0.00018	1	
1,2,4-Trimethylbenzene	0.00045	J	mg/kg	0.0018	0.00031	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	101		70-130	

		Serial_N	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-11	Date Collected:	05/23/24 12:13
Client ID:	136N-SB10-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 18:37		
Analyst:	ТМН		
Percent Solids:	84%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1	
Benzene	ND		mg/kg	0.00049	0.00016	1	
Toluene	ND		mg/kg	0.00098	0.00054	1	
Ethylbenzene	ND		mg/kg	0.00098	0.00014	1	
p/m-Xylene	ND		mg/kg	0.0020	0.00055	1	
o-Xylene	ND		mg/kg	0.00098	0.00029	1	
Xylenes, Total	ND		mg/kg	0.00098	0.00029	1	
Isopropylbenzene	ND		mg/kg	0.00098	0.00011	1	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00019	1	
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00033	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	133	Q	70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	109		70-130	

		Serial_No:06032415:47		
Project Name:	PESRM	Lab Number:	L2428914	
Project Number:	P044.001.006	Report Date:	06/03/24	
	SAMPLE RESULTS			
Lab ID:	L2428914-12	Date Collected:	05/23/24 10:05	
Client ID:	136N-SB02-3.0-3.5	Date Received:	05/23/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/25/24 21:34 TMH 86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.11	0.011	1	
Benzene	ND		mg/kg	0.028	0.0093	1	
Toluene	0.030	J	mg/kg	0.056	0.030	1	
Ethylbenzene	0.024	J	mg/kg	0.056	0.0079	1	
p/m-Xylene	0.041	J	mg/kg	0.11	0.031	1	
o-Xylene	0.071		mg/kg	0.056	0.016	1	
Xylenes, Total	0.11	J	mg/kg	0.056	0.016	1	
Isopropylbenzene	0.078		mg/kg	0.056	0.0061	1	
1,3,5-Trimethylbenzene	0.013	J	mg/kg	0.11	0.011	1	
1,2,4-Trimethylbenzene	0.034	J	mg/kg	0.11	0.019	1	

Surrogate	% Recovery	cceptance Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	98	70-130	

		Serial_No:06032415:47		
Project Name:	PESRM	Lab Number:	L2428914	
Project Number:	P044.001.006	Report Date:	06/03/24	
	SAMPLE RESULTS			
Lab ID:	L2428914-12	Date Collected:	05/23/24 10:05	
Client ID:	136N-SB02-3.0-3.5	Date Received:	05/23/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 05/28/24 22:46 AJK 86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0017	0.00017	1	
Benzene	0.00043		mg/kg	0.00042	0.00014	1	
Toluene	0.0013		mg/kg	0.00084	0.00045	1	
Ethylbenzene	0.0013		mg/kg	0.00084	0.00012	1	
p/m-Xylene	0.0046		mg/kg	0.0017	0.00047	1	
o-Xylene	0.015		mg/kg	0.00084	0.00024	1	
Xylenes, Total	0.020		mg/kg	0.00084	0.00024	1	
Isopropylbenzene	0.031		mg/kg	0.00084	0.00009	1	
1,3,5-Trimethylbenzene	0.0021		mg/kg	0.0017	0.00016	1	
1,2,4-Trimethylbenzene	0.0036		mg/kg	0.0017	0.00028	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	131	Q	70-130	
4-Bromofluorobenzene	624	Q	70-130	
Dibromofluoromethane	99		70-130	

		Serial_N	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-13	Date Collected:	05/23/24 11:30
Client ID:	136N-SB09-3.0-3.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/30/24 10:36		
Analyst:	JIC		
Percent Solids:	84%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1	
Benzene	0.0029		mg/kg	0.00050	0.00017	1	
Toluene	0.0011		mg/kg	0.0010	0.00054	1	
Ethylbenzene	0.0025		mg/kg	0.0010	0.00014	1	
p/m-Xylene	0.0032		mg/kg	0.0020	0.00056	1	
o-Xylene	0.0025		mg/kg	0.0010	0.00029	1	
Xylenes, Total	0.0057		mg/kg	0.0010	0.00029	1	
Isopropylbenzene	0.012		mg/kg	0.0010	0.00011	1	
1,3,5-Trimethylbenzene	0.017		mg/kg	0.0020	0.00019	1	
1,2,4-Trimethylbenzene	0.032		mg/kg	0.0020	0.00033	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	282	Q	70-130	
Dibromofluoromethane	89		70-130	

		Serial_N	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-14	Date Collected:	05/23/24 11:36
Client ID:	136N-SB07-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/30/24 18:14		
Analyst:	JIC		
Percent Solids:	83%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab									
Methyl tert butyl ether	ND		mg/kg	0.12	0.012	1			
Benzene	0.75		mg/kg	0.030	0.012	1			
Toluene	0.31		mg/kg	0.061	0.033	1			
Ethylbenzene	2.7		mg/kg	0.061	0.0086	1			
p/m-Xylene	49.	E	mg/kg	0.12	0.034	1			
o-Xylene	9.4		mg/kg	0.061	0.018	1			
Isopropylbenzene	7.0		mg/kg	0.061	0.0066	1			
1,3,5-Trimethylbenzene	8.0		mg/kg	0.12	0.012	1			
1,2,4-Trimethylbenzene	18.	E	mg/kg	0.12	0.020	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	190	Q	70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	76		70-130	

		Serial_N	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-14 D	Date Collected:	05/23/24 11:36
Client ID:	136N-SB07-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/29/24 11:59		
Analyst:	AJK		
Percent Solids:	83%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hi	gh - Westborough Lab					
p/m-Xylene	46.		mg/kg	1.2	0.34	10
Xylenes, Total	55.		mg/kg	0.061	0.018	10
1,2,4-Trimethylbenzene	19.		mg/kg	1.2	0.20	10
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			85		7	70-130
Toluene-d8			105		7	70-130
4-Bromofluorobenzene			98		7	70-130

95

70-130

Dibromofluoromethane

			Serial_No	0:06032415:47
Project Name:	PESRM		Lab Number:	L2428914
Project Number:	P044.001.006		Report Date:	06/03/24
	SA	PLE RESULTS		
Lab ID:	L2428914-15		Date Collected:	05/23/24 00:00
Client ID:	TB-240523		Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	05/29/24 12:42			
Analyst:	PID			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	0.75	0.20	1		
Ethylbenzene	ND		ug/l	0.50	0.17	1		
p/m-Xylene	ND		ug/l	1.0	0.33	1		
o-Xylene	ND		ug/l	1.0	0.39	1		
Xylenes, Total	ND		ug/l	1.0	0.33	1		
Isopropylbenzene	ND		ug/l	0.50	0.19	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.22	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	115	70-130	

			Serial_N	0:06032415:47
Project Name:	PESRM		Lab Number:	L2428914
Project Number:	P044.001.006		Report Date:	06/03/24
	S	MPLE RESULTS		
Lab ID:	L2428914-16		Date Collected:	05/23/24 16:30
Client ID:	FB-240523		Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	05/29/24 13:04			
Analyst:	PID			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	0.75	0.20	1		
Ethylbenzene	ND		ug/l	0.50	0.17	1		
p/m-Xylene	ND		ug/l	1.0	0.33	1		
o-Xylene	ND		ug/l	1.0	0.39	1		
Xylenes, Total	ND		ug/l	1.0	0.33	1		
Isopropylbenzene	ND		ug/l	0.50	0.19	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.22	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	115	70-130	

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/25/24 14:24Analyst:LAC

Parameter	Result	Qualifier	Units	RL	Μ	DL
/olatile Organics by EPA 5035 Low	- Westborou	ugh Lab for	sample(s):	02-11	Batch:	WG1927019-5
Methyl tert butyl ether	ND		mg/kg	0.0020	0.0	0020
Benzene	ND		mg/kg	0.00050	0.0	0017
Toluene	ND		mg/kg	0.0010	0.0	0054
Ethylbenzene	ND		mg/kg	0.0010	0.0	0014
p/m-Xylene	ND		mg/kg	0.0020	0.0	0056
o-Xylene	ND		mg/kg	0.0010	0.0	0029
Xylenes, Total	ND		mg/kg	0.0010	0.0	0029
Isopropylbenzene	ND		mg/kg	0.0010	0.0	0011
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.0	0019
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.0	0033

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	104	70-130

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/25/24 14:24Analyst:LAC

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High/	- Westbord	ough Lab fo	or sample(s):	12	Batch:	WG1927020-5
Methyl tert butyl ether	ND		mg/kg	0.10		0.010
Benzene	ND		mg/kg	0.025		0.0083
Toluene	ND		mg/kg	0.050		0.027
Ethylbenzene	ND		mg/kg	0.050		0.0070
p/m-Xylene	ND		mg/kg	0.10		0.028
o-Xylene	ND		mg/kg	0.050		0.014
Xylenes, Total	ND		mg/kg	0.050		0.014
Isopropylbenzene	ND		mg/kg	0.050		0.0054
1,3,5-Trimethylbenzene	ND		mg/kg	0.10		0.0096
1,2,4-Trimethylbenzene	ND		mg/kg	0.10		0.017

		4	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	112		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	104		70-130

Lab Number: L2428914 **Report Date:** 06/03/24

Project Name: PESRM **Project Number:** P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: Analyst: RAW

05/28/24 20:53

arameter	Result	Qualifier	Units	RL	MC	DL
olatile Organics by EPA 503	5 Low - Westbord	ugh Lab fo	r sample(s):	01,12	Batch:	WG1927197-5
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00	020
Benzene	ND		mg/kg	0.00050	0.00	0017
Toluene	ND		mg/kg	0.0010	0.00	0054
Ethylbenzene	ND		mg/kg	0.0010	0.00	0014
p/m-Xylene	ND		mg/kg	0.0020	0.00	0056
o-Xylene	ND		mg/kg	0.0010	0.00	029
Xylenes, Total	ND		mg/kg	0.0010	0.00	029
Isopropylbenzene	ND		mg/kg	0.0010	0.00	0011
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00	0019
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00	0033

		ŀ	Acceptance	
Surrogate	%Recovery C	Qualifier	Criteria	
				_
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/29/24 08:17Analyst:PID

Parameter	Result Qua	lifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab for s	ample(s): 15-16	Batch:	WG1927204-5
Methyl tert butyl ether	ND	ug/l	1.0	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	0.75	0.20
Ethylbenzene	ND	ug/l	0.50	0.17
p/m-Xylene	ND	ug/l	1.0	0.33
o-Xylene	ND	ug/l	1.0	0.39
Xylenes, Total	ND	ug/l	1.0	0.33
Isopropylbenzene	ND	ug/l	0.50	0.19
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.22
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.19

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	112	70-130

Lab Number: L2428914 **Report Date:** 06/03/24

Project Name: PESRM **Project Number:** P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: AJK

1,8260D 05/29/24 08:53

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbord	ough Lab fo	r sample(s):	14	Batch:	WG1927709-5
Methyl tert butyl ether	ND		mg/kg	0.10		0.010
Benzene	ND		mg/kg	0.025		0.0083
Toluene	ND		mg/kg	0.050		0.027
Ethylbenzene	ND		mg/kg	0.050		0.0070
p/m-Xylene	ND		mg/kg	0.10		0.028
o-Xylene	ND		mg/kg	0.050		0.014
Xylenes, Total	ND		mg/kg	0.050		0.014
Isopropylbenzene	ND		mg/kg	0.050		0.0054
1,3,5-Trimethylbenzene	ND		mg/kg	0.10		0.0096
1,2,4-Trimethylbenzene	ND		mg/kg	0.10		0.017

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	89		70-130
Toluene-d8	96		70-130
4-Bromofluorobenzene	88		70-130
Dibromofluoromethane	105		70-130

Lab Number: L2428914 **Report Date:** 06/03/24

Project Name: PESRM **Project Number:** P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: AJK

1,8260D 05/30/24 09:15

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	- Westborou	igh Lab for	sample(s):	13	Batch:	WG1928073-5
Methyl tert butyl ether	ND		mg/kg	0.002	0	0.00020
Benzene	ND		mg/kg	0.0005	50	0.00017
Toluene	ND		mg/kg	0.001	0	0.00054
Ethylbenzene	ND		mg/kg	0.001	0	0.00014
p/m-Xylene	ND		mg/kg	0.002	0	0.00056
o-Xylene	ND		mg/kg	0.001	0	0.00029
Xylenes, Total	ND		mg/kg	0.001	0	0.00029
Isopropylbenzene	ND		mg/kg	0.001	0	0.00011
1,3,5-Trimethylbenzene	ND		mg/kg	0.002	0	0.00019
1,2,4-Trimethylbenzene	ND		mg/kg	0.002	0	0.00033

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	_
				-
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	100		70-130	

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/30/24 09:02Analyst:AJK

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Hig	h - Westbor	ough Lab fo	or sample(s):	14	Batch:	WG1928079-5
Methyl tert butyl ether	ND		mg/kg	0.10		0.010
Benzene	ND		mg/kg	0.025		0.0083
Toluene	ND		mg/kg	0.050		0.027
Ethylbenzene	ND		mg/kg	0.050		0.0070
p/m-Xylene	ND		mg/kg	0.10		0.028
o-Xylene	ND		mg/kg	0.050		0.014
Xylenes, Total	ND		mg/kg	0.050		0.014
Isopropylbenzene	ND		mg/kg	0.050		0.0054
1,3,5-Trimethylbenzene	ND		mg/kg	0.10		0.0096
1,2,4-Trimethylbenzene	ND		mg/kg	0.10		0.017

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	100		70-130	

Lab Number: L2428914

Project Number: P044.001.006

PESRM

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by EPA 5035 Low - Westbo	brough Lab Asso	ociated sample(s): 02-11 B	atch: WG1	927019-3 WG192	7019-4		
Methyl tert butyl ether	117		124		66-130	6		30
Benzene	120		126		70-130	5		30
Toluene	118		123		70-130	4		30
Ethylbenzene	121		126		70-130	4		30
p/m-Xylene	122		128		70-130	5		30
o-Xylene	117		124		70-130	6		30
Isopropylbenzene	114		119		70-130	4		30
1,3,5-Trimethylbenzene	113		118		70-130	4		30
1,2,4-Trimethylbenzene	112		117		70-130	4		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	109	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	95	94	70-130
Dibromofluoromethane	102	101	70-130

Project Name: PESRM Project Number: P044.001.006 Lab Number: L2428914

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	prough Lab Ass	ociated sampl	e(s): 12 Batch	: WG1927	7020-3 WG19270	20-4		
Methyl tert butyl ether	117		124		66-130	6		30
Benzene	120		126		70-130	5		30
Toluene	118		123		70-130	4		30
Ethylbenzene	121		126		70-130	4		30
p/m-Xylene	122		128		70-130	5		30
o-Xylene	117		124		70-130	6		30
Isopropylbenzene	114		119		70-130	4		30
1,3,5-Trimethylbenzene	113		118		70-130	4		30
1,2,4-Trimethylbenzene	112		117		70-130	4		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria	
1,2-Dichloroethane-d4	110	109	70-130	
Toluene-d8	101	101	70-130	
4-Bromofluorobenzene	95	95	70-130	
Dibromofluoromethane	102	101	70-130	

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2428914 Report Date: 06/03/24

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01,12 Batch: WG1927197-3 WG1927197-4 Methyl tert butyl ether 104 104 66-130 0 30 104 101 70-130 3 30 Benzene Toluene 98 95 70-130 3 30 Ethylbenzene 100 97 70-130 3 30 p/m-Xylene 101 98 70-130 3 30 o-Xylene 96 70-130 2 30 98 Isopropylbenzene 96 92 70-130 4 30 30 1,3,5-Trimethylbenzene 96 91 70-130 5 1,2,4-Trimethylbenzene 94 90 70-130 4 30

Acceptance LCS LCSD Criteria %Recovery Qual %Recovery Qual Surrogate 1,2-Dichloroethane-d4 99 101 70-130 100 70-130 Toluene-d8 101 4-Bromofluorobenzene 98 97 70-130 Dibromofluoromethane 70-130 101 101

Project Name:

Project Number:

PESRM

P044.001.006

Project Name: PESRM Project Number: P044.001.006 Lab Number: L2428914

arameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	15-16	Batch:	WG1927204-3	WG1927204-4			
Methyl tert butyl ether	84			83		63-130	1		20
Benzene	110			100		70-130	10		20
Toluene	110			100		70-130	10		20
Ethylbenzene	110			100		70-130	10		20
p/m-Xylene	110			100		70-130	10		20
o-Xylene	110			100		70-130	10		20
Isopropylbenzene	100			96		70-130	4		20
1,3,5-Trimethylbenzene	99			92		64-130	7		20
1,2,4-Trimethylbenzene	100			94		70-130	6		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	95	97	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	92	94	70-130
Dibromofluoromethane	102	101	70-130

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2428914

 Report Date:
 06/03/24

Project Name:PESRMProject Number:P044.001.006

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 14 Batch: WG1927709-3 WG1927709-4 Methyl tert butyl ether 80 79 66-130 1 30 87 88 Benzene 70-130 30 1 Toluene 89 90 70-130 1 30 Ethylbenzene 90 92 70-130 2 30 p/m-Xylene 97 98 70-130 30 1 o-Xylene 93 96 70-130 3 30 Isopropylbenzene 93 94 70-130 1 30 1,3,5-Trimethylbenzene 70-130 30 92 93 1 1,2,4-Trimethylbenzene 30 91 93 70-130 2

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qu	al Criteria
1,2-Dichloroethane-d4	84	84	70-130
Toluene-d8	97	99	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	102	101	70-130

Lab Number: L2428914

Project Number: P044.001.006

PESRM

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by EPA 5035 Low - Westbo	orough Lab Asso	ciated sample	(s): 13 Batch:	: WG19280	73-3 WG19280	73-4		
Methyl tert butyl ether	78		76		66-130	3		30
Benzene	85		80		70-130	6		30
Toluene	90		83		70-130	8		30
Ethylbenzene	91		85		70-130	7		30
p/m-Xylene	97		90		70-130	7		30
o-Xylene	94		88		70-130	7		30
Isopropylbenzene	95		89		70-130	7		30
1,3,5-Trimethylbenzene	93		87		70-130	7		30
1,2,4-Trimethylbenzene	93		87		70-130	7		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	ual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	79	81	70-130
Toluene-d8	96	95	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	95	95	70-130

Lab Number: L2428914

Project Number: P044.001.006

PESRM

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by EPA 5035 High - Westbo	orough Lab Ass	ociated sample	e(s): 14 Batch	: WG1928	3079-3 WG19280	79-4		
Methyl tert butyl ether	93		88		66-130	6		30
Benzene	102		96		70-130	6		30
Toluene	103		98		70-130	5		30
Ethylbenzene	102		96		70-130	6		30
p/m-Xylene	106		100		70-130	6		30
o-Xylene	102		99		70-130	3		30
Isopropylbenzene	103		97		70-130	6		30
1,3,5-Trimethylbenzene	102		99		70-130	3		30
1,2,4-Trimethylbenzene	105		98		70-130	7		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	85	88	70-130
Toluene-d8	96	96	70-130
4-Bromofluorobenzene	93	93	70-130
Dibromofluoromethane	94	95	70-130

SEMIVOLATILES

		Serial_No	:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-01	Date Collected:	05/23/24 16:15
Client ID:	136N-SB06-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 00:28
Analytical Date:	05/30/24 14:03		
Analyst:	LJG		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Naphthalene	0.14		mg/kg	0.037	0.023	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			69		2	3-120
2-Fluorobiphenyl			54		3	0-120
4-Terphenyl-d14			57		1	8-120

		Serial_No	:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-02	Date Collected:	05/23/24 16:00
Client ID:	136N-SB08-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 00:28
Analytical Date:	05/30/24 14:27		
Analyst:	LJG		
Percent Solids:	91%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Naphthalene	0.32		mg/kg	0.036	0.022	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			85		2	23-120
2-Fluorobiphenyl			71		3	80-120
4-Terphenyl-d14			74		1	8-120

		Serial_No:	06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-03	Date Collected:	05/23/24 15:45
Client ID:	136N-SB05-2.0-2.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 00:28
Analytical Date:	05/30/24 14:50		
Analyst:	LJG		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Naphthalene	0.086		mg/kg	0.038	0.023	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			33		2	3-120
2-Fluorobiphenyl			31		3	0-120
4-Terphenyl-d14			34		1	8-120

		Serial_No:	06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-04	Date Collected:	05/23/24 15:20
Client ID:	136N-SB03-3.0-3.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 00:28
Analytical Date:	05/30/24 15:13		
Analyst:	LJG		
Percent Solids:	88%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Naphthalene	0.067		mg/kg	0.037	0.023	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			79		2	3-120
2-Fluorobiphenyl			64		3	0-120
4-Terphenyl-d14			69		1	8-120

		Serial_No:06032415:47
Project Name:	PESRM	Lab Number: L2428914
Project Number:	P044.001.006	Report Date: 06/03/24
	SAMPLE RESULTS	
Lab ID:	L2428914-05	Date Collected: 05/23/24 14:40
Client ID:	136N-SB04-3.5-4.0	Date Received: 05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/29/24 00:28
Analytical Date:	05/30/24 15:37	
Analyst:	LJG	
Percent Solids:	85%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Naphthalene	0.051		mg/kg	0.039	0.024	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			70		2	3-120
2-Fluorobiphenyl			67		3	0-120
4-Terphenyl-d14			72		1	8-120

		Serial_No:06032415:47	
Project Name:	PESRM	Lab Number: L2428914	
Project Number:	P044.001.006	Report Date: 06/03/24	
	SAMPLE RESULTS		
Lab ID:	L2428914-06 D	Date Collected: 05/23/24 14:10	2
Client ID:	136N-SB01-1.0-1.5	Date Received: 05/23/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified	
Sample Depth:			
Matrix:	Soil	Extraction Method: EPA 3546	
Analytical Method:	1,8270E	Extraction Date: 05/31/24 11:22	2
Analytical Date:	06/01/24 07:40		
Analyst:	JG		
Percent Solids:	79%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Naphthalene	ND		mg/kg	2.5	1.5	20
Surrogate			% Recovery	Qualifier		eptance riteria
Nitrobenzene-d5			0	Q	:	23-120
2-Fluorobiphenyl			0	Q	;	30-120
4-Terphenyl-d14			0	Q		18-120

		Serial_No:06032415:47
Project Name:	PESRM	Lab Number: L2428914
Project Number:	P044.001.006	Report Date: 06/03/24
	SAMPLE RESULTS	
Lab ID:	L2428914-07 D	Date Collected: 05/23/24 14:10
Client ID:	136N-SB01-1.0-1.5D	Date Received: 05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/31/24 11:22
Analytical Date:	06/01/24 08:04	
Analyst:	JG	
Percent Solids:	78%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Naphthalene	0.96	J	mg/kg	1.3	0.77	10
Surrogate			% Recovery	Qualifier		otance eria
Nitrobenzene-d5			69		23	3-120
2-Fluorobiphenyl			62		30)-120
4-Terphenyl-d14			72		18	3-120

		Serial_No:06032415:		
Project Name:	PESRM	Lab Number:	L2428914	
Project Number:	P044.001.006	Report Date:	06/03/24	
	SAMPLE RESULTS			
Lab ID:	L2428914-08	Date Collected:	05/23/24 13:30	
Client ID:	136N-SB20-2.5-3.0	Date Received:	05/23/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Soil	Extraction Method	: EPA 3546	
Analytical Method:	1,8270E	Extraction Date:	05/29/24 01:16	
Analytical Date:	05/30/24 16:47			
Analyst:	LJG			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Naphthalene	0.12		mg/kg	0.038	0.023	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			42		2	23-120
2-Fluorobiphenyl			51		3	80-120
4-Terphenyl-d14			52		1	8-120

			Serial_No	:06032415:47
Project Name:	PESRM		Lab Number:	L2428914
Project Number:	P044.001.006		Report Date:	06/03/24
		SAMPLE RESULTS		
Lab ID:	L2428914-09	D	Date Collected:	05/23/24 13:20
Client ID:	136N-SB19-2.5-3.0		Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK	KAVE.	Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3546
Analytical Method:	1,8270E		Extraction Date:	05/29/24 01:16
Analytical Date:	05/31/24 14:52			
Analyst:	MRG			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Naphthalene	ND		mg/kg	0.19	0.12	5
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			74		2	23-120
2-Fluorobiphenyl			68		3	80-120
4-Terphenyl-d14			60		1	8-120

		Serial_No	0:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-10	Date Collected:	05/23/24 12:35
Client ID:	136N-SB14-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	1: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 01:16
Analytical Date:	05/30/24 17:33		
Analyst:	LJG		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Naphthalene	0.23		mg/kg	0.038	0.023	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			84		2	23-120
2-Fluorobiphenyl			80		3	80-120
4-Terphenyl-d14			83		1	8-120

		Serial_No:06032415:47
Project Name:	PESRM	Lab Number: L2428914
Project Number:	P044.001.006	Report Date: 06/03/24
	SAMPLE RESULTS	
Lab ID:	L2428914-11 D	Date Collected: 05/23/24 12:13
Client ID:	136N-SB10-2.0-2.5	Date Received: 05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/29/24 01:16
Analytical Date:	05/31/24 15:15	
Analyst:	MRG	
Percent Solids:	84%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	oorough Lab					
Naphthalene	0.12	J	mg/kg	0.19	0.12	5
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			76		2	23-120
2-Fluorobiphenyl			64		3	80-120
4-Terphenyl-d14			59		1	8-120

		Serial_No:(06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-12	Date Collected:	05/23/24 10:05
Client ID:	136N-SB02-3.0-3.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 01:16
Analytical Date:	05/30/24 18:20		
Analyst:	LJG		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Naphthalene	0.40		mg/kg	0.038	0.023	1
Surrogate			% Recovery	Qualifier		otance teria
Nitrobenzene-d5			80		2	3-120
2-Fluorobiphenyl			66		3	0-120
4-Terphenyl-d14			72		1	8-120

		Serial_No	:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-13	Date Collected:	05/23/24 11:30
Client ID:	136N-SB09-3.0-3.5	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	l: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 01:16
Analytical Date:	05/30/24 17:22		
Analyst:	IM		
Percent Solids:	84%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Naphthalene	0.27		mg/kg	0.039	0.024	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			83		2	23-120
2-Fluorobiphenyl			83		3	80-120
4-Terphenyl-d14			67		1	8-120

		Serial_No	:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-14	Date Collected:	05/23/24 11:36
Client ID:	136N-SB07-2.5-3.0	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/29/24 01:16
Analytical Date:	05/30/24 17:46		
Analyst:	IM		
Percent Solids:	83%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Naphthalene	0.29		mg/kg	0.039	0.024	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			25		2	3-120
2-Fluorobiphenyl			24	Q	3	0-120
4-Terphenyl-d14			22		1	8-120

		Serial_No	:06032415:47
Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24
	SAMPLE RESULTS		
Lab ID:	L2428914-16	Date Collected:	05/23/24 16:30
Client ID:	FB-240523	Date Received:	05/23/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date:	05/30/24 01:21
Analytical Date:	05/31/24 18:18		
Analyst:	JJW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/N	AS-SIM - Westborough Lab					
Naphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier		eptance iteria
Nitrobenzene-d5			36		:	23-120
2-Fluorobiphenyl			32			15-120
4-Terphenyl-d14			35	Q		41-149

			Serial_No:	:06032415:47
Project Name:	PESRM		Lab Number:	L2428914
Project Number:	P044.001.006		Report Date:	06/03/24
		SAMPLE RESULTS		
Lab ID:	L2428914-16 RE		Date Collected:	05/23/24 16:30
Client ID: Sample Location:	FB-240523 3144 W.PASSYUNK AVE	-	Date Received: Field Prep:	05/23/24 Not Specified
Sample Location.	3144 W.PA331 UNK AVE		rieiu riep.	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	: EPA 3510C
Analytical Method:	1,8270E-SIM		Extraction Date:	06/01/24 23:04
Analytical Date:	06/02/24 11:51			
Analyst:	AH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
laphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			69		2	23-120
2-Fluorobiphenyl			61		1	5-120
4-Terphenyl-d14			74		4	1-149

Project Name: Project Number:	PESRM P044.001.006		Lab Number: Report Date:	L2428914 06/03/24
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270E 05/30/24 08:37 IM		Extraction Method Extraction Date:	: EPA 3546 05/29/24 00:28

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for	sample(s):	01-05,08-14	Batch:	WG1926753-1
Naphthalene	ND		mg/kg	0.032	0.020	

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	73	30-120
4-Terphenyl-d14	88	18-120

Project Name: Project Number:	PESRM P044.001.006		Lab Number: Report Date:	L2428914 06/03/24
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270E-SIM 05/31/24 18:02 JJW		Extraction Method: Extraction Date:	EPA 3510C 05/30/24 01:21

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sampl	e(s): 16	Batch: WG1927316-1
Naphthalene	ND		ug/l	0.10	0.02

	Acceptan		
Surrogate	%Recovery	Qualifier	Criteria
Nitrobenzene-d5	35		23-120
2-Fluorobiphenyl	29		15-120
4-Terphenyl-d14	33	Q	41-149

Project Name:	PESRM		Lab Number:	L2428914
Project Number:	P044.001.006		Report Date:	06/03/24
		Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270E	Extraction Method:	EPA 3546
Analytical Date:	05/31/24 14:15	Extraction Date:	05/31/24 07:52
Analyst:	MRG		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by G	C/MS - Westborough	n Lab for s	ample(s):	06-07	Batch:	WG1928018-1
Naphthalene	ND		mg/kg	0.032		0.020

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	62	30-120
2,4,6-Tribromophenol	67	10-136
4-Terphenyl-d14	70	18-120

Project Name: Project Number:	PESRM P044.001.006		Lab Number: Report Date:	L2428914 06/03/24
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270E-SIM 06/02/24 11:01 AH		Extraction Method: Extraction Date:	EPA 3510C 06/01/24 23:04

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sampl	e(s): 16	Batch: WG1928562-1
Naphthalene	ND		ug/l	0.10	0.02

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	70	23-120			
2-Fluorobiphenyl	68	15-120			
4-Terphenyl-d14	71	41-149			

Project Name:PESRMProject Number:P044.001.006

	LCS		LCSD		%Recovery	/		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associa	ted sample(s)	: 01-05,08-14	Batch:	WG1926753-2	WG1926753-3			
Naphthalene	85		103		40-140	19		50	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
Nitrobenzene-d5	98	120	23-120	
2-Fluorobiphenyl	74	88	30-120	
4-Terphenyl-d14	87	105	18-120	

Project Name:PESRMProject Number:P044.001.006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - West	borough Lab As	sociated samp	ole(s): 16 Batc	h: WG192	27316-2 WG19273	316-3		
Naphthalene	31	Q	31	Q	40-140	0	40	

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Nitrobenzene-d5	37		38		23-120	
2-Fluorobiphenyl	31		34		15-120	
4-Terphenyl-d14	35	Q	37	Q	41-149	

Project Name:	PESRM
Project Number:	P044.001.006

Parameter	LCS %Recoverv	Qual	LCSD %Recoverv	%Recovery Qual Limits	RPD	RPD Qual Limits	
						Qual Ellints	
Semivolatile Organics by GC/MS - Westbord	ugh Lab Associa	ted sample(s)	: 06-07 Batch:	WG1928018-2 WG192807	18-3		
Naphthalene	66		66	40-140	0	50	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	75	75	25-120
Phenol-d6	71	72	10-120
Nitrobenzene-d5	70	71	23-120
2-Fluorobiphenyl	61	62	30-120
2,4,6-Tribromophenol	67	66	10-136
4-Terphenyl-d14	67	65	18-120

Project Name:PESRMProject Number:P044.001.006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated samp	ole(s): 16 Batch	n: WG192	28562-2 WG19285	62-3		
Naphthalene	54		60		40-140	11	4	10

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
Nitrobenzene-d5	62	67	23-120
2-Fluorobiphenyl	63	62	15-120
4-Terphenyl-d14	80	72	41-149

INORGANICS & MISCELLANEOUS

Serial No:06032415:47

Project Name: PESRM Project Number: P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-0 136N-SB06- 3144 W.PAS	2.0-2.5	AVE.					Received:	05/23/24 16:15 05/23/24 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	86.5		%	0.100	NA	1	-	05/24/24 11:3	9 121,2540G	ROI

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-0 136N-SB08- 3144 W.PAS	2.0-2.5	AVE.					Received:	05/23/24 16:00 05/23/24 Not Specified	
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	90.8		%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-03 136N-SB05- 3144 W.PAS	2.0-2.5	AVE.					Received:	05/23/24 15:45 05/23/24 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	87.0		%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-04 136N-SB03-3.0-3 3144 W.PASSYU						Received: (05/23/24 15:20 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - Wes	stborough Lab								
olids, Total	87.6	%	0.100	NA	1	-	05/24/24 11:39) 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-0 136N-SB04- 3144 W.PAS	3.5-4.0	AVE.					Received:	05/23/24 14:40 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	85.0		%	0.100	NA	1	-	05/24/24 11:3	9 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-0 136N-SB01- 3144 W.PAS	1.0-1.5	AVE.					Received:	05/23/24 14:10 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	78.5		%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial N	No:06032415:47
----------	----------------

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-07 136N-SB01-1.0-1. 3144 W.PASSYUI					Date Received: 0		05/23/24 14:10 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	78.3	%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-08 136N-SB20-2.9 3144 W.PASS					Date Received: 0		05/23/24 13:30 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	87.0	%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial No:06032415:47

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-09 136N-SB19-2.5-3. 3144 W.PASSYUI	-					Received: (05/23/24 13:20 05/23/24 Not Specified)
Sample Depth: Matrix:	Soil					_			
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - Wes	stborough Lab								
olids, Total	86.5	%	0.100	NA	1	-	05/24/24 11:39) 121,2540G	ROI

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-1 136N-SB14- 3144 W.PAS	-2.5-3.0	AVE.					Received:	05/23/24 12:35 05/23/24 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Solids, Total	86.2		%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial N	No:06032415:47
----------	----------------

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-1 136N-SB10 3144 W.PAS	2.0-2.5	AVE.					Received:	05/23/24 12:13 05/23/24 Not Specified	}
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total	84.4		%	0.100	NA	1	-	05/24/24 11:3	9 121,2540G	ROI

Serial N	No:06032415:47
----------	----------------

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-12 136N-SB02-3.0-3. 3144 W.PASSYUN	-					Received:	05/23/24 10:05 05/23/24 Not Specified	5
Sample Depth: Matrix:	Soil								
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	86.1	%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Serial N	No:06032415:47
----------	----------------

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-1 136N-SB09- 3144 W.PAS	-3.0-3.5	AVE.				Date Collected: Date Received: Field Prep:		05/23/24 11:30 05/23/24 Not Specified	
Sample Depth: Matrix:	Soil					Dilution Factor	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	General Chemistry - Westborough Lab									
Solids, Total	84.0		%	0.100	NA	1	-	05/24/24 11:3	9 121,2540G	ROI

Serial N	No:06032415:47
----------	----------------

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2428914-14 136N-SB07-2.5-3. 3144 W.PASSYUN	-					Received: (05/23/24 11:36 05/23/24 Not Specified	5
Sample Depth: Matrix:	Soil								
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	82.6	%	0.100	NA	1	-	05/24/24 11:39	9 121,2540G	ROI

Project Name: Project Number:	PESRM P044.001.006	6	Lab Duplicate Ana Batch Quality Conti		ab Number eport Date		
Parameter		Native Samp	ble Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Wes 2.5	stborough Lab	Associated sample(s): 01-14	QC Batch ID: WG1925408-1	QC Sample:	L2428914-01	Client ID:	136N-SB06-2.0-
Solids, Total		86.5	84.8	%	2		20

. .

Serial_No:06032415:47 *Lab Number:* L2428914 *Report Date:* 06/03/24

Sample Receipt and Container Information

Frozen

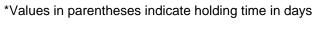
YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent
В	Absent
С	Absent

Container Information Container ID Container Type


Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2428914-01A	Vial MeOH preserved	В	NA		2.6	Y	Absent		PA-8260HLW(14)
L2428914-01B	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-01C	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-01D	Plastic 120ml unpreserved	В	NA		2.6	Y	Absent		TS(7)
L2428914-01E	Glass 120ml/4oz unpreserved	В	NA		2.6	Y	Absent		PA-PAH(14)
L2428914-02A	Vial MeOH preserved	С	NA		3.5	Y	Absent		PA-8260HLW(14)
L2428914-02B	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-02C	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-02D	Plastic 120ml unpreserved	С	NA		3.5	Y	Absent		TS(7)
L2428914-02E	Glass 120ml/4oz unpreserved	С	NA		3.5	Y	Absent		PA-PAH(14)
L2428914-03A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
L2428914-03B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-03C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-03D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
L2428914-03E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
L2428914-04A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
L2428914-04B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-04C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-04D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
L2428914-04E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
L2428914-05A	Vial MeOH preserved	В	NA		2.6	Y	Absent		PA-8260HLW(14)

Initial Final Temp

Serial_No:06032415:47 *Lab Number:* L2428914 *Report Date:* 06/03/24

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
L2428914-05B	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-05C	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-05D	Plastic 120ml unpreserved	В	NA		2.6	Y	Absent		TS(7)
L2428914-05E	Glass 120ml/4oz unpreserved	В	NA		2.6	Y	Absent		PA-PAH(14)
L2428914-06A	Vial MeOH preserved	С	NA		3.5	Y	Absent		PA-8260HLW(14)
L2428914-06B	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-06C	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-06D	Plastic 120ml unpreserved	С	NA		3.5	Y	Absent		TS(7)
L2428914-06E	Glass 120ml/4oz unpreserved	С	NA		3.5	Y	Absent		PA-PAH(14)
L2428914-07A	Vial MeOH preserved	С	NA		3.5	Y	Absent		PA-8260HLW(14)
L2428914-07B	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-07C	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-07D	Plastic 120ml unpreserved	С	NA		3.5	Y	Absent		TS(7)
L2428914-07E	Glass 120ml/4oz unpreserved	С	NA		3.5	Y	Absent		PA-PAH(14)
L2428914-08A	Vial MeOH preserved	В	NA		2.6	Y	Absent		PA-8260HLW(14)
L2428914-08B	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-08C	Vial water preserved	В	NA		2.6	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-08D	Plastic 120ml unpreserved	В	NA		2.6	Y	Absent		TS(7)
L2428914-08E	Glass 120ml/4oz unpreserved	В	NA		2.6	Y	Absent		PA-PAH(14)
L2428914-09A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
L2428914-09B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-09C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-09D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
L2428914-09E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
L2428914-10A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
L2428914-10B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-10C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
L2428914-10D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)

Serial_No:06032415:47 *Lab Number:* L2428914 *Report Date:* 06/03/24

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2428914-10E	Glass 120ml/4oz unpreserved	A	NA		5.7	Y	Absent		PA-PAH(14)
	L2428914-11A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
	L2428914-11B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-11C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-11D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
	L2428914-11E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
	L2428914-12A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260H(14),PA-8260HLW(14)
	L2428914-12B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260H(14),PA-8260HLW(14)
	L2428914-12C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260H(14),PA-8260HLW(14)
	L2428914-12D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
	L2428914-12E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
	L2428914-13A	Vial MeOH preserved	А	NA		5.7	Y	Absent		PA-8260HLW(14)
	L2428914-13B	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-13C	Vial water preserved	А	NA		5.7	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-13D	Plastic 120ml unpreserved	А	NA		5.7	Y	Absent		TS(7)
	L2428914-13E	Glass 120ml/4oz unpreserved	А	NA		5.7	Y	Absent		PA-PAH(14)
	L2428914-14A	Vial MeOH preserved	С	NA		3.5	Y	Absent		PA-8260HLW(14)
	L2428914-14B	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-14C	Vial water preserved	С	NA		3.5	Y	Absent	24-MAY-24 09:43	PA-8260HLW(14)
	L2428914-14D	Plastic 120ml unpreserved	С	NA		3.5	Y	Absent		TS(7)
	L2428914-14E	Glass 120ml/4oz unpreserved	С	NA		3.5	Y	Absent		PA-PAH(14)
	L2428914-15A	Vial HCI preserved	С	NA		3.5	Y	Absent		PA-8260(14)
	L2428914-15B	Vial HCI preserved	С	NA		3.5	Y	Absent		PA-8260(14)
	L2428914-16A	Vial HCI preserved	С	NA		3.5	Y	Absent		PA-8260(14)
	L2428914-16B	Vial HCI preserved	С	NA		3.5	Y	Absent		PA-8260(14)
	L2428914-16C	Vial HCI preserved	С	NA		3.5	Y	Absent		PA-8260(14)
	L2428914-16D	Amber 100ml unpreserved	С	6	6	3.5	Y	Absent		PA-PAHSIM-RVT(7)
	L2428914-16E	Amber 100ml unpreserved	С	6	6	3.5	Y	Absent		PA-PAHSIM-RVT(7)

Container ID Container Type

Serial_No:06032415:47 *Lab Number:* L2428914 *Report Date:* 06/03/24

Container Information

Initial Final Temp Cooler pH pH deg C |

Temp deg C Pres Seal

Frozen Date/Time

Analysis(*)

Project Name: PESRM

Project Number: P044.001.006

Lab Number: L2428914

Report Date: 06/03/24

GLOSSARY

Acronyms

•	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

L2428914

06/03/24

Project Name:PESRMLab Number:Project Number:P044.001.006Report Date:

Footnotes

F	υ	υ	u	υ	ι	e	

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:06032415:47

Project Name:	PESRM	Lab Number:	L2428914
Project Number:	P044.001.006	Report Date:	06/03/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: PESRM Project Number: P044.001.006

 Lab Number:
 L2428914

 Report Date:
 06/03/24

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

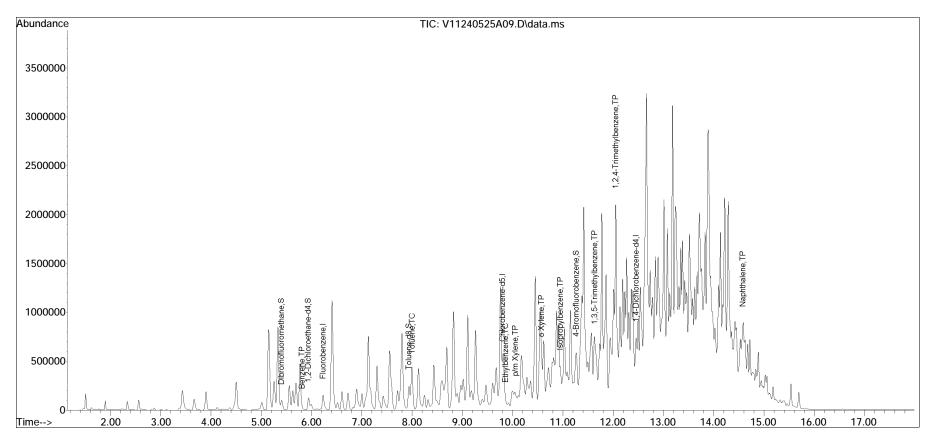
Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

												Ser	rial_No:06032415:47
Ацена	CHAIN OF	CU	STO	DY PA	BE_\	OF Z	Date Rec	d in Lab:	512	24/7	4	ALPHA	Job #: L242891
A STATE OF THE STA	ANSFIELD, MA	Project	Informa	ation			Report I	nformatio	on - Data	Delivera	bles	Billing	Information
Charles and the second second	L 508-822-9300 X 508-822-3288	Project N	lame: P	ESAM			G FAX	2	EMAIL			Same a	as Client into PO #:
Client Information		Project L	ocation	nuy w.	Passy	white the.	D ADEx	0	Add'I De	liverables	1		
Client: Temphase 1	Ennemy	Project #	Pour	-001-00	6		Regulator		ements/	Report Li	mits		
ddress Lou Casa	I pointe Blud.			N- Scu			State /Fed	Program		Criteria	9		
Prinden, NJ.		ALPHA (Quote #:				C.						
	5171 Pat 92	Turn-A	Around T	īme		-						_	
ax:		10											
imail: wick scal	la Ofensphise an	Standa		C RUSH perform		caraved1	ANALYSIS	30/	11	11	1	111	
and a second	en previously analyzed by Alpha	Date Du	le:		Time:		AMALYSIS Sc35 6.3	22	11	//	/ /	11	SAMPLE HANDLING
Other Project Spec	ific Requirements/Comn	nents/De	etection	Limits:			35 14			/ /	11	11	Filtration
please en	I EDD to EDD D	1	alace	1.000			4 3			11		$\left(\right)$	Not needed
	EDDO	terra	pound	Lours -			NA T	11	11	11	11	11	Lab to do Preservation
ALPHA Lab ID			C	ollection	Sample	Sampler's	1 Cust	11	/ /	11	11	///	(Please specify below)
(Lab Use Only)	Sample ID	_	Date	Time	Matrix	Initials	- Aller				11		Sample Specific Comments
28914-01 136	6N- 5806- 20-2.5	5	5/23/20	16:15	50	1004	1						
-02136	61- 5005-202	5	1	16,00	1	T	Ŷ						
-03 136	N-5805-2.0-2	.5		15:45			X						
04 136	SB03- 3.0-3.5			15:20			X						
	N- 5804-3.5-4.			H:40			X						
	6N- 5B01-1.0-1.5			141:10			V						
	6D-5B01-1.0-1.5			14:10			2						
	6N- JBZO - Z.S.			13:30			2						
	p - 5819- 2.5-		11	13:20			S						
and the second se			11		y	V	5						
	16N-5B14-25	- 2.0		12:35		1.30		-				-	
Kel Stad Sta	24/24 0420 - 5/24/24 420					tainer Type							Please print clearly, legibly and co pletely. Samples can not be logg
qui	Span pace your	Relinou	ished By:		1	reservative te/Time			10	_	Date/	Time	in and turnaround time clock will r start until any ambiguities are res
	11	00.	named by:		5/23		B	Received	2 m	April		x/1730	All samples submitted are subject
	141						IN		- I - A	1115	U. 1. 1. 1 1 1	10101	Alpha's Terms and Conditions.
FORM NO: 01-01 (rev 14-0CT-07	n An	AB	COR	- PACE	CSid		12	lot	-		SAS/2	4 1500	See reverse side.

Serial_No:06032415:47

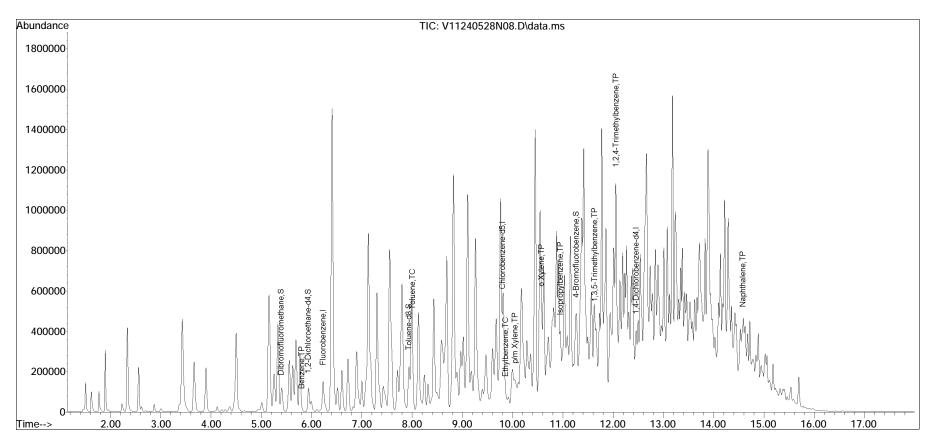

PHA	CHAIN OF (CUS	STO	DY P	AGE 2	OF 2	Date	Rec'd in	Lab:	5	24	24	p	AL	PHA	Job #:	LU	1280	14
TEL: 508-898-9220 TEL: 5	08,822,9300		Informati		-		Rep	ort Info		on - Da		veral	oles	Bi	lling	Informati as Client in	on		
FAX: 508-698-9193 FAX: 5 Client Information			ame: PES	HW. P	455400	K	1.0	DEx			Delivera	bles		-	arris c	a calorit in		-	
Content of the second second				001.00		-	Regu	latory F	Requi	rement	s/Repo	rt Li	nits						
Address: 100 Caral				J. Scul		_	State	/Fed Pro	ogram	- 1	Ç	riteria							
Princhen, US,		LPHA QI).) Cul	A		-	-	-	-	-	-	-	-	-		-		_
Phone: 609.236.5	Caste	-	round Tin	ne				-											
Fax:					_														
Email: nich . Section @ to	unaluse, cours:	Standar		RUSH inty	Time:	(pertent)	0	200	222	1	11	/	1	/	11	77		HANDLING	
These samples have been Other Project Specific Please equal 1	Requirements/Commen			mits:			ANALYSIC	N. 1	-			1			1		Filtration_ Done Not nee Lab to o Preservat	aded do	G TAL
ALPHA Lab ID (Lab Use Only)	Sample ID	+	Colle Date	ection Time	Sample Matrix	Sampler's Initials	Short Liet			11	1	1	[]	/		B	Please specify		1 1 1 1 1 1
28914-11 361	V-5BID_2.0-2.5	5 0	5/23/24	12:13	50	KTO	V												
	N- 5002 -3.0-3.5		1	10:05	1	1	X												
1	1-5009- 3.0-3.5	-		11:30	11		X							1					
	J-5807-2.5-3.			11.36	J		V						1	1					
	-240523			16:27			2			-	1		+	+					+
	24 0523		J	16:30		1	X	-	-				+	-					+
						-		-				-	-						-
							+	-					-	-					+
20: Shin	5/24/24 420			F		tainer Type Ireservative										plately 3	Samples i	y, legibly an can not be l time clock	logged
-1	F	Relinquis	shed By;		Da 5/23/	ite/Time	0	R	leceive	d By:	PAC	e l		e/Tim	1730	start unti All samp	l any amb les submi	iguitles are tted are sul	e resolv bject to
10000	lug a	A	Sa 1	ACC	11-11	4 (T.)	710	Sp	D	100	riy.	7 10	32	27	100		erms and erse side.	i Conditions	р.

Data Path : K:\VOA111\2024\240525A\
Data File : V11240525A09.D
Acq On : 25 May 2024 03:40 pm
Operator : VOA111:TMH
Sample : L2428914-04,31,6.85,5,,B
Misc : WG1927019,ICAL20962
ALS Vial : 9 Sample Multiplier: 1

Quant Time: May 28 12:43:04 2024
Quant Method : K:\VOA111\2024\240525A\V111_240321N_8260.m
Quant Title : VOLATILES BY GC/MS
QLast Update : Fri Mar 22 12:08:01 2024

Response via : Initial Calibration

Sub List : 8260-PA_ShortList - PA Short list525A03.D•

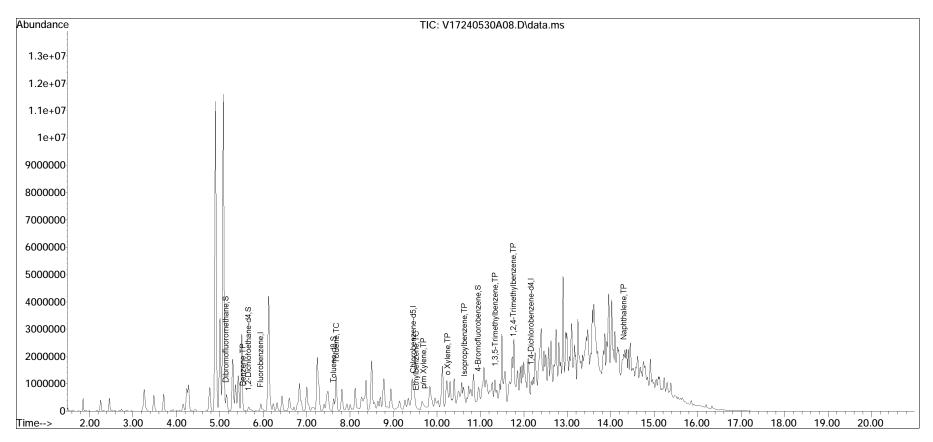

V111_240321N_8260.m Wed May 29 12:04:04 2024

Data Path : K:\VOA111\2024\240528N\
Data File : V11240528N08.D
Acq On : 28 May 2024 10:46 pm
Operator : VOA111:AJK
Sample : L2428914-12,31,6.95,5,,C
Misc : WG1927197,ICAL20962
ALS Vial : 8 Sample Multiplier: 1
Quant Time: May 29 09:56:04 2024
Quant Method : K:\VOA111\2024\240528N\V111_240321N_8260.m
Quant Title : VOLATILES BY GC/MS

QLast Update : Fri Mar 22 12:08:01 2024

Response via : Initial Calibration

Sub List : 8260-PA_ShortList - PA Short list528N02.D•

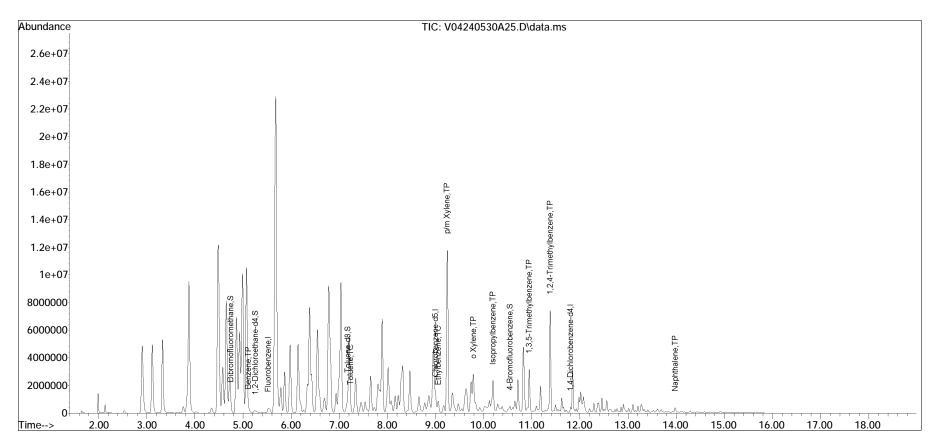

V111_240321N_8260.m Wed May 29 16:56:22 2024

Data Path : K:\VOA117\2024\240530A\
Data File : V17240530A08.D
Acq On : 30 May 2024 10:36 am
Operator : VOA117:JIC
Sample : L2428914-13,31,5.95,5,,C
Misc : WG1928073,ICAL20984
ALS Vial : 8 Sample Multiplier: 1

Quant Time: May 30 12:39:39 2024
Quant Method : K:\VOA117\2024\240530A\V117_240326N_8260.m
Quant Title : VOLATILES BY GC/MS
QLast Update : Wed Mar 27 10:55:42 2024

Response via : Initial Calibration

Sub List : 8260-PA_ShortList - PA Short list530A01.D•



V117_240326N_8260.m Fri May 31 10:07:20 2024

Data Path : K:\VOA104\2024\240530A\ Data File : V04240530A25.D Acq On : 30 May 2024 6:14 pm Operator : VOA104:JIC Sample : L2428914-14,31H,6.01,5,0.100,,A Misc : WG1928079,ICAL21038 ALS Vial : 25 Sample Multiplier: 1

Quant Time: May 31 09:29:08 2024 Quant Method : K:\VOA104\2024\240530A\V104_240410N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Thu Apr 11 11:43:39 2024 Response via : Initial Calibration

Sub List : 8260-PA_ShortList - PA Short list530A01.D•

V104_240410N_8260.m Fri May 31 10:24:15 2024

ANALYTICAL REPORT

Lab Number:	L2429024
Client:	Terraphase Engineering Inc.
	1100 East Hector Street
	Suite 400
	Conshohocken, PA 19428
ATTN:	Alexander Strohl
Phone:	(215) 297-3502
Project Name:	PESRM
Project Number:	P044.001.006
Report Date:	06/04/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06042415:40

Project Name:PESRMProject Number:P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2429024-01	136N-SB18-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 10:22	05/24/24
L2429024-02	136N-SB17-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	05/24/24 10:10	05/24/24
L2429024-03	136N-SB16-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 09:54	05/24/24
L2429024-04	136N-SB15-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 09:32	05/24/24
L2429024-05	136N-SB13-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 09:13	05/24/24
L2429024-06	136N-SB12-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 08:51	05/24/24
L2429024-07	136N-SB11-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	05/24/24 08:30	05/24/24
L2429024-08	FB-240524	WATER	3144 W.PASSYUNK AVE.	05/24/24 10:50	05/24/24
L2429024-09	TB-240524	WATER	3144 W.PASSYUNK AVE.	05/24/24 00:00	05/24/24

Project Name: PESRM Project Number: P044.001.006
 Lab Number:
 L2429024

 Report Date:
 06/04/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: PESRM Project Number: P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Case Narrative (continued)

Report Revision

June 04, 2024: The Volatile Organics analyte list has been amended on L2429024-09.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2429024-05: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (154%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Semivolatile Organics by SIM

L2429024-03D and -05D: The sample has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix.

L2429024-03D and -05D: The surrogate recoveries are below the acceptance criteria for nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%) and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

The WG1927316-2/-3 LCS/LCSD recoveries, associated with L2429024-08, were outside the acceptance criteria for naphthalene (31%/31%); however, the criteria was achieved upon re-extraction outside of holding time. The results of both extractions are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Walleh Caitlin Walukevich

Title: Technical Director/Representative

Date: 06/04/24

ORGANICS

VOLATILES

		Serial_N	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RE	SULTS	
Lab ID:	L2429024-01	Date Collected:	05/24/24 10:22
Client ID:	136N-SB18-1.0-1.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 19:02		
Analyst:	ТМН		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1		
Benzene	0.00024	J	mg/kg	0.00050	0.00016	1		
Toluene	ND		mg/kg	0.0010	0.00054	1		
Ethylbenzene	ND		mg/kg	0.0010	0.00014	1		
p/m-Xylene	ND		mg/kg	0.0020	0.00056	1		
o-Xylene	ND		mg/kg	0.0010	0.00029	1		
Xylenes, Total	ND		mg/kg	0.0010	0.00029	1		
Isopropylbenzene	ND		mg/kg	0.0010	0.00011	1		
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00019	1		
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00033	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	103	70-130	

		Serial_N	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-02	Date Collected:	05/24/24 10:10
Client ID:	136N-SB17-1.5-2.0	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 19:27		
Analyst:	ТМН		
Percent Solids:	87%		

Result	Qualifier	Units	RL	MDL	Dilution Factor
Westborough Lab					
ND		mg/kg	0.0020	0.00020	1
0.00042	J	mg/kg	0.00049	0.00016	1
ND		mg/kg	0.00098	0.00053	1
ND		mg/kg	0.00098	0.00014	1
ND		mg/kg	0.0020	0.00055	1
ND		mg/kg	0.00098	0.00029	1
ND		mg/kg	0.00098	0.00029	1
ND		mg/kg	0.00098	0.00011	1
ND		mg/kg	0.0020	0.00019	1
ND		mg/kg	0.0020	0.00033	1
	Westborough Lab ND 0.00042 ND ND ND ND ND ND ND ND ND ND	Westborough Lab ND 0.00042 J ND ND ND ND ND ND ND ND ND ND	NDmg/kg0.00042Jmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kg	ND mg/kg 0.0020 0.00042 J mg/kg 0.00049 ND mg/kg 0.00098 ND mg/kg 0.00098 ND mg/kg 0.0020 ND mg/kg 0.00098 ND mg/kg 0.0020 ND mg/kg 0.00298 ND mg/kg 0.00098 ND mg/kg 0.00098 ND mg/kg 0.00098 ND mg/kg 0.00098 ND mg/kg 0.00098	ND mg/kg 0.0020 0.00020 0.00042 J mg/kg 0.00049 0.00016 ND mg/kg 0.00098 0.00053 ND mg/kg 0.00098 0.00014 ND mg/kg 0.00098 0.00014 ND mg/kg 0.00098 0.00014 ND mg/kg 0.0020 0.00055 ND mg/kg 0.00098 0.00029 ND mg/kg 0.00098 0.00011 ND mg/kg 0.0020 0.00011

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	102	70-130	

		Serial_N	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-03	Date Collected:	05/24/24 09:54
Client ID:	136N-SB16-2.0-2.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 19:53		
Analyst:	ТМН		
Percent Solids:	84%		

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab						
ND		mg/kg	0.0022	0.00022	1	
0.0028		mg/kg	0.00056	0.00019	1	
0.0017		mg/kg	0.0011	0.00061	1	
0.00032	J	mg/kg	0.0011	0.00016	1	
0.0025		mg/kg	0.0022	0.00063	1	
0.0013		mg/kg	0.0011	0.00033	1	
0.0038		mg/kg	0.0011	0.00033	1	
0.0023		mg/kg	0.0011	0.00012	1	
0.00092	J	mg/kg	0.0022	0.00022	1	
0.0026		mg/kg	0.0022	0.00037	1	
	ND 0.0028 0.0017 0.00032 0.00032 0.0013 0.0013 0.0038 0.0023 0.0023 0.00032	ND 0.0028 0.0017 0.00032 J 0.00032 J 0.0025 0.0013 0.0038 0.0023 J 0.0023 J 0.0023 J 0.0023 J 0.0023 J </td <td>ND mg/kg 0.0028 mg/kg 0.0017 mg/kg 0.00032 J mg/kg 0.0017 mg/kg mg/kg 0.00032 J mg/kg 0.0025 mg/kg mg/kg 0.0013 mg/kg mg/kg 0.0023 mg/kg mg/kg 0.0023 mg/kg mg/kg</td> <td>ND mg/kg 0.0022 0.0028 mg/kg 0.00056 0.0017 mg/kg 0.0011 0.00032 J mg/kg 0.0011 0.0025 mg/kg 0.0022 0.0011 0.0025 mg/kg 0.0011 0.0022 0.0013 mg/kg 0.0011 0.0011 0.0023 mg/kg 0.0011 0.0011 0.0023 mg/kg 0.0011 0.0022</td> <td>ND mg/kg 0.0022 0.00022 0.0028 mg/kg 0.00056 0.00019 0.0017 mg/kg 0.0011 0.00061 0.00032 J mg/kg 0.0011 0.00016 0.0025 mg/kg 0.0011 0.00033 0.00033 0.0013 mg/kg 0.0011 0.00033 0.0023 mg/kg 0.0011 0.00033 0.0023 mg/kg 0.0011 0.00032 0.00092 J mg/kg 0.0012 0.00022</td>	ND mg/kg 0.0028 mg/kg 0.0017 mg/kg 0.00032 J mg/kg 0.0017 mg/kg mg/kg 0.00032 J mg/kg 0.0025 mg/kg mg/kg 0.0013 mg/kg mg/kg 0.0023 mg/kg mg/kg 0.0023 mg/kg mg/kg	ND mg/kg 0.0022 0.0028 mg/kg 0.00056 0.0017 mg/kg 0.0011 0.00032 J mg/kg 0.0011 0.0025 mg/kg 0.0022 0.0011 0.0025 mg/kg 0.0011 0.0022 0.0013 mg/kg 0.0011 0.0011 0.0023 mg/kg 0.0011 0.0011 0.0023 mg/kg 0.0011 0.0022	ND mg/kg 0.0022 0.00022 0.0028 mg/kg 0.00056 0.00019 0.0017 mg/kg 0.0011 0.00061 0.00032 J mg/kg 0.0011 0.00016 0.0025 mg/kg 0.0011 0.00033 0.00033 0.0013 mg/kg 0.0011 0.00033 0.0023 mg/kg 0.0011 0.00033 0.0023 mg/kg 0.0011 0.00032 0.00092 J mg/kg 0.0012 0.00022	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	123		70-130	
Dibromofluoromethane	110		70-130	

			Serial_N	p:06042415:40
Project Name:	PESRM		Lab Number:	L2429024
Project Number:	P044.001.006		Report Date:	06/04/24
		SAMPLE RESULTS		
Lab ID:	L2429024-04 D2		Date Collected:	05/24/24 09:32
Client ID:	136N-SB15-1.0-1.5		Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	05/29/24 03:25			
Analyst:	AJK			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - Westborough Lab							
Methyl tert butyl ether	ND		mg/kg	0.56	0.056	5	
Benzene	84.		mg/kg	0.14	0.047	5	
Toluene	38.		mg/kg	0.28	0.15	5	
Ethylbenzene	13.		mg/kg	0.28	0.040	5	
p/m-Xylene	120		mg/kg	0.56	0.16	5	
o-Xylene	54.		mg/kg	0.28	0.082	5	
Xylenes, Total	170		mg/kg	0.28	0.082	5	
Isopropylbenzene	87.	Е	mg/kg	0.28	0.031	5	
1,3,5-Trimethylbenzene	33.		mg/kg	0.56	0.054	5	
1,2,4-Trimethylbenzene	95.	Е	mg/kg	0.56	0.094	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	90	70-130	

		Serial_No:06042415:40
Project Name:	PESRM	Lab Number: L2429024
Project Number:	P044.001.006	Report Date: 06/04/24
	SAMPLE RESULTS	
Lab ID:	L2429024-04 D	Date Collected: 05/24/24 09:32
Client ID:	136N-SB15-1.0-1.5	Date Received: 05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	
Analytical Method:	1,8260D	
Analytical Date:	05/25/24 21:59	
Analyst:	ТМН	
Percent Solids:	86%	

Parameter	Result Qu	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab				
Isopropylbenzene	93.	mg/kg	0.56	0.061	10
1,2,4-Trimethylbenzene	100	mg/kg	1.1	0.19	10
Surrogate		% Recovery	Qualifier		eptance iteria
1,2-Dichloroethane-d4		102		7	70-130
Toluene-d8		107		7	70-130
4-Bromofluorobenzene		112		7	70-130
Dibromofluoromethane		94		7	70-130

		Serial_No:06042415:40
Project Name:	PESRM	Lab Number: L2429024
Project Number:	P044.001.006	Report Date: 06/04/24
	SAMPLE RESULTS	8
Lab ID:	L2429024-05	Date Collected: 05/24/24 09:13
Client ID:	136N-SB13-1.0-1.5	Date Received: 05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	
Analytical Method:	1,8260D	
Analytical Date:	05/29/24 04:15	
Analyst:	AJK	
Percent Solids:	86%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westborough Lab						
Methyl tert butyl ether	ND		mg/kg	0.0021	0.00021	1
Benzene	0.00034	J	mg/kg	0.00052	0.00017	1
Toluene	ND		mg/kg	0.0010	0.00057	1
Ethylbenzene	ND		mg/kg	0.0010	0.00015	1
p/m-Xylene	ND		mg/kg	0.0021	0.00059	1
o-Xylene	ND		mg/kg	0.0010	0.00030	1
Xylenes, Total	ND		mg/kg	0.0010	0.00030	1
Isopropylbenzene	0.0012		mg/kg	0.0010	0.00011	1
1,3,5-Trimethylbenzene	ND		mg/kg	0.0021	0.00020	1
1,2,4-Trimethylbenzene	0.00038	J	mg/kg	0.0021	0.00035	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	154	Q	70-130	
Dibromofluoromethane	100		70-130	

		Serial_No	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-06	Date Collected:	05/24/24 08:51
Client ID:	136N-SB12-3.0-3.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/25/24 20:18		
Analyst:	ТМН		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab					
Methyl tert butyl ether	ND		mg/kg	0.0024	0.00024	1
Benzene	0.00093		mg/kg	0.00060	0.00020	1
Toluene	ND		mg/kg	0.0012	0.00065	1
Ethylbenzene	ND		mg/kg	0.0012	0.00017	1
p/m-Xylene	ND		mg/kg	0.0024	0.00067	1
o-Xylene	ND		mg/kg	0.0012	0.00035	1
Xylenes, Total	ND		mg/kg	0.0012	0.00035	1
Isopropylbenzene	ND		mg/kg	0.0012	0.00013	1
1,3,5-Trimethylbenzene	ND		mg/kg	0.0024	0.00023	1
1,2,4-Trimethylbenzene	ND		mg/kg	0.0024	0.00040	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	104		70-130	

		Serial_No:06042415:40		
Project Name:	PESRM	Lab Number:	L2429024	
Project Number:	P044.001.006	Report Date:	06/04/24	
	SAMPLE RESULTS			
Lab ID:	L2429024-07	Date Collected:	05/24/24 08:30	
Client ID:	136N-SB11-2.0-2.5	Date Received:	05/24/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	05/25/24 20:43			
Analyst:	ТМН			
Percent Solids:	85%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westborough Lab						
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1
Benzene	0.00045	J	mg/kg	0.00050	0.00017	1
Toluene	ND		mg/kg	0.0010	0.00055	1
Ethylbenzene	ND		mg/kg	0.0010	0.00014	1
p/m-Xylene	ND		mg/kg	0.0020	0.00057	1
o-Xylene	ND		mg/kg	0.0010	0.00029	1
Xylenes, Total	ND		mg/kg	0.0010	0.00029	1
Isopropylbenzene	ND		mg/kg	0.0010	0.00011	1
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00020	1
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00034	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No	0:06042415:40
Project Name:	PESRM		Lab Number:	L2429024
Project Number:	P044.001.006		Report Date:	06/04/24
	S	MPLE RESULTS		
Lab ID:	L2429024-08		Date Collected:	05/24/24 10:50
Client ID:	FB-240524		Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	05/29/24 11:57			
Analyst:	PID			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.20	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
p/m-Xylene	ND		ug/l	1.0	0.33	1	
o-Xylene	ND		ug/l	1.0	0.39	1	
Xylenes, Total	ND		ug/l	1.0	0.33	1	
Isopropylbenzene	ND		ug/l	0.50	0.19	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	115		70-130	

		Serial_N	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE	RESULTS	
Lab ID:	L2429024-09	Date Collected:	05/24/24 00:00
Client ID:	TB-240524	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	05/29/24 12:20		
Analyst:	PID		

Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab							
ND		ug/l	1.0	0.17	1		
ND		ug/l	0.50	0.16	1		
ND		ug/l	0.75	0.20	1		
ND		ug/l	0.50	0.17	1		
ND		ug/l	1.0	0.33	1		
ND		ug/l	1.0	0.39	1		
ND		ug/l	1.0	0.33	1		
ND		ug/l	0.50	0.19	1		
ND		ug/l	2.5	0.22	1		
ND		ug/l	2.5	0.19	1		
	ough Lab ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug/l	ND ug/l 1.0 ND ug/l 0.50 ND ug/l 0.75 ND ug/l 0.75 ND ug/l 1.0 ND ug/l 2.5	ND ug/l 1.0 0.17 ND ug/l 0.50 0.16 ND ug/l 0.75 0.20 ND ug/l 0.50 0.17 ND ug/l 1.0 0.33 ND ug/l 1.0 0.33 ND ug/l 1.0 0.33 ND ug/l 0.50 0.19 ND ug/l 0.50 0.19 ND ug/l 2.5 0.22		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	115	70-130	

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/25/24 14:24Analyst:LAC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low 5	- Westboro	ugh Lab for	sample(s):	01-03,06-07	Batch:	WG1927019-
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	
Benzene	ND		mg/kg	0.00050	0.00017	
Toluene	ND		mg/kg	0.0010	0.00054	
Ethylbenzene	ND		mg/kg	0.0010	0.00014	
p/m-Xylene	ND		mg/kg	0.0020	0.00056	
o-Xylene	ND		mg/kg	0.0010	0.00029	
Xylenes, Total	ND		mg/kg	0.0010	0.00029	
Isopropylbenzene	ND		mg/kg	0.0010	0.00011	
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00019	
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00033	

	Acceptar				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	112		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	97		70-130		
Dibromofluoromethane	104		70-130		

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/25/24 14:24Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by EPA 503	5 High - Westbord	ough Lab for sample	e(s): 04 E	Batch: WG1927020-5
Methyl tert butyl ether	ND	mg/kg	0.10	0.010
Benzene	ND	mg/kg	0.025	0.0083
Toluene	ND	mg/kg	0.050	0.027
Ethylbenzene	ND	mg/kg	0.050	0.0070
p/m-Xylene	ND	mg/kg	0.10	0.028
o-Xylene	ND	mg/kg	0.050	0.014
Xylenes, Total	ND	mg/kg	0.050	0.014
Isopropylbenzene	ND	mg/kg	0.050	0.0054
1,3,5-Trimethylbenzene	ND	mg/kg	0.10	0.0096
1,2,4-Trimethylbenzene	ND	mg/kg	0.10	0.017

		Acceptance		
Surrogate	%Recovery C	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	104		70-130	

Lab Number: L2429024 **Report Date:** 06/04/24

Project Name: PESRM **Project Number:** P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: RAW

1,8260D 05/28/24 20:53

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 503	35 Low - Westbord	ough Lab fo	r sample(s):	05	Batch:	WG1927197-5
Methyl tert butyl ether	ND		mg/kg	0.002	0	0.00020
Benzene	ND		mg/kg	0.0005	50	0.00017
Toluene	ND		mg/kg	0.001	0	0.00054
Ethylbenzene	ND		mg/kg	0.001	0	0.00014
p/m-Xylene	ND		mg/kg	0.002	0	0.00056
o-Xylene	ND		mg/kg	0.001	0	0.00029
Xylenes, Total	ND		mg/kg	0.001	0	0.00029
Isopropylbenzene	ND		mg/kg	0.001	0	0.00011
1,3,5-Trimethylbenzene	ND		mg/kg	0.002	0	0.00019
1,2,4-Trimethylbenzene	ND		mg/kg	0.002	0	0.00033

Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	97		70-130		
Dibromofluoromethane	100		70-130		

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Project Name:PESRMProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/29/24 08:17Analyst:PID

arameter	Result Qua	alifier Units	RL	MDL
olatile Organics by GC	C/MS - Westborough Lab for	sample(s): 08-0	9 Batch:	WG1927204-5
Methyl tert butyl ether	ND	ug/l	1.0	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	0.75	0.20
Ethylbenzene	ND	ug/l	0.50	0.17
p/m-Xylene	ND	ug/l	1.0	0.33
o-Xylene	ND	ug/l	1.0	0.39
Xylenes, Total	ND	ug/l	1.0	0.33
Isopropylbenzene	ND	ug/l	0.50	0.19
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.22
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.19

Surrogate	%Recovery Qual	ifier Criteria			
1,2-Dichloroethane-d4	99	70-130			
Toluene-d8	96	70-130			
4-Bromofluorobenzene	96	70-130			
Dibromofluoromethane	112	70-130			

Lab Number: L2429024 **Report Date:** 06/04/24

Project Name: PESRM **Project Number:** P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: Analyst: RAW

05/28/24 20:53

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 503	35 High - Westbord	ough Lab fo	or sample(s):	04	Batch:	WG1927205-5
Methyl tert butyl ether	ND		mg/kg	0.10		0.010
Benzene	ND		mg/kg	0.025		0.0083
Toluene	ND		mg/kg	0.050		0.027
Ethylbenzene	ND		mg/kg	0.050		0.0070
p/m-Xylene	ND		mg/kg	0.10		0.028
o-Xylene	ND		mg/kg	0.050		0.014
Xylenes, Total	ND		mg/kg	0.050		0.014
Isopropylbenzene	ND		mg/kg	0.050		0.0054
1,3,5-Trimethylbenzene	ND		mg/kg	0.10		0.0096
1,2,4-Trimethylbenzene	ND		mg/kg	0.10		0.017

Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	98		70-130		
Dibromofluoromethane	100		70-130		

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2429024

Project Number: P044.001.006

PESRM

Project Name:

Report Date: 06/04/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
olatile Organics by EPA 5035 Low - Westbo	prough Lab Asso	ociated sample(s	s): 01-03,06-07	Batch:	WG1927019-3	WG1927019-4	
Methyl tert butyl ether	117		124		66-130	6	30
Benzene	120		126		70-130	5	30
Toluene	118		123		70-130	4	30
Ethylbenzene	121		126		70-130	4	30
p/m-Xylene	122		128		70-130	5	30
o-Xylene	117		124		70-130	6	30
Isopropylbenzene	114		119		70-130	4	30
1,3,5-Trimethylbenzene	113		118		70-130	4	30
1,2,4-Trimethylbenzene	112		117		70-130	4	30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	109	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	95	94	70-130
Dibromofluoromethane	102	101	70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2429024

Project Number: P044.001.006

PESRM

Project Name:

Report Date: 06/04/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	orough Lab Ass	ociated sample	e(s): 04 Batch	: WG1927	7020-3 WG19270	20-4		
Methyl tert butyl ether	117		124		66-130	6		30
Benzene	120		126		70-130	5		30
Toluene	118		123		70-130	4		30
Ethylbenzene	121		126		70-130	4		30
p/m-Xylene	122		128		70-130	5		30
o-Xylene	117		124		70-130	6		30
Isopropylbenzene	114		119		70-130	4		30
1,3,5-Trimethylbenzene	113		118		70-130	4		30
1,2,4-Trimethylbenzene	112		117		70-130	4		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	109	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	102	101	70-130

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Project Number: P044.001.006

Project Name:

PESRM

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 05 Batch: WG1927197-3 WG1927197-4 Methyl tert butyl ether 104 104 66-130 0 30 104 101 Benzene 70-130 3 30 Toluene 98 95 70-130 3 30 Ethylbenzene 100 97 70-130 3 30 p/m-Xylene 101 98 70-130 3 30 o-Xylene 98 96 70-130 2 30 Isopropylbenzene 96 92 70-130 4 30 1,3,5-Trimethylbenzene 70-130 30 96 91 5 1,2,4-Trimethylbenzene 30 94 90 70-130 4

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	101	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	101	101	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: PESRM Project Number: P044.001.006 Lab Number: L2429024

Report Date: 06/04/24

arameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	08-09 Batch:	WG1927204-3	WG1927204-4			
Methyl tert butyl ether	84		83		63-130	1		20
Benzene	110		100		70-130	10		20
Toluene	110		100		70-130	10		20
Ethylbenzene	110		100		70-130	10		20
p/m-Xylene	110		100		70-130	10		20
o-Xylene	110		100		70-130	10		20
Isopropylbenzene	100		96		70-130	4		20
1,3,5-Trimethylbenzene	99		92		64-130	7		20
1,2,4-Trimethylbenzene	100		94		70-130	6		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	95	97	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	92	94	70-130
Dibromofluoromethane	102	101	70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2429024

Project Number: P044.001.006

PESRM

Project Name:

Report Date: 06/04/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 04 Batch: WG1927205-3 WG1927205-4								
Methyl tert butyl ether	104		104		66-130	0		30
Benzene	104		101		70-130	3		30
Toluene	98		95		70-130	3		30
Ethylbenzene	100		97		70-130	3		30
p/m-Xylene	101		98		70-130	3		30
o-Xylene	98		96		70-130	2		30
Isopropylbenzene	96		92		70-130	4		30
1,3,5-Trimethylbenzene	96		91		70-130	5		30
1,2,4-Trimethylbenzene	94		90		70-130	4		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	101	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	101	100	70-130

SEMIVOLATILES

		Serial_No	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-01	Date Collected:	05/24/24 10:22
Client ID:	136N-SB18-1.0-1.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	l: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/31/24 07:52
Analytical Date:	06/01/24 09:37		
Analyst:	IM		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Naphthalene	0.18		mg/kg	0.038	0.023	1	
Surrogate			% Recovery	Qualifier		ptance iteria	
Nitrobenzene-d5			47		2	3-120	
2-Fluorobiphenyl			48		3	0-120	
4-Terphenyl-d14			53		1	8-120	

		Serial_No	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-02	Date Collected:	05/24/24 10:10
Client ID:	136N-SB17-1.5-2.0	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	d: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/31/24 07:52
Analytical Date:	06/01/24 06:30		
Analyst:	IM		
Percent Solids:	87%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Naphthalene	0.16		mg/kg	0.038	0.023	1		
Surrogate			% Recovery	Qualifier		ptance iteria		
Nitrobenzene-d5			59		2	23-120		
2-Fluorobiphenyl			42		3	80-120		
4-Terphenyl-d14			44		1	8-120		

		Serial_No:06042415:40
Project Name:	PESRM	Lab Number: L2429024
Project Number:	P044.001.006	Report Date: 06/04/24
	SAMPLE R	SULTS
Lab ID:	L2429024-03 D	Date Collected: 05/24/24 09:54
Client ID:	136N-SB16-2.0-2.5	Date Received: 05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/31/24 07:52
Analytical Date:	06/01/24 06:54	
Analyst:	IM	
Percent Solids:	84%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Naphthalene	0.66	J	mg/kg	0.77	0.47	20		
Surrogate			% Recovery	Qualifier		eptance iteria		
Nitrobenzene-d5			0	Q	2	23-120		
2-Fluorobiphenyl			0	Q	;	30-120		
4-Terphenyl-d14			0	Q		18-120		

		Serial_No	0:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-04	Date Collected:	05/24/24 09:32
Client ID:	136N-SB15-1.0-1.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	l: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/31/24 07:52
Analytical Date:	06/01/24 06:07		
Analyst:	IM		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Naphthalene	7.4		mg/kg	0.038	0.023	1		
Surrogate			% Recovery	Qualifier		ptance iteria		
Nitrobenzene-d5			69		2	3-120		
2-Fluorobiphenyl			46		3	0-120		
4-Terphenyl-d14			52		1	8-120		

			Serial_No	0:06042415:40
Project Name:	PESRM		Lab Number:	L2429024
Project Number:	P044.001.006		Report Date:	06/04/24
		SAMPLE RESULTS		
Lab ID:	L2429024-05	D	Date Collected:	05/24/24 09:13
Client ID:	136N-SB13-1.0-1.5		Date Received:	05/24/24
Sample Location:	3144 W.PASSYUN	KAVE.	Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	d: EPA 3546
Analytical Method:	1,8270E		Extraction Date:	05/31/24 07:52
Analytical Date:	06/01/24 10:00			
Analyst:	IM			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Naphthalene	1.5		mg/kg	1.2	0.70	30		
Surrogate			% Recovery	Qualifier		eptance riteria		
Nitrobenzene-d5			0	Q	:	23-120		
2-Fluorobiphenyl			0	Q	;	30-120		
4-Terphenyl-d14			0	Q		18-120		

		Serial_No:06042415:40
Project Name:	PESRM	Lab Number: L2429024
Project Number:	P044.001.006	Report Date: 06/04/24
	SAMPLE RESULTS	
Lab ID:	L2429024-06	Date Collected: 05/24/24 08:51
Client ID:	136N-SB12-3.0-3.5	Date Received: 05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/31/24 07:52
Analytical Date:	06/01/24 09:14	
Analyst:	IM	
Percent Solids:	87%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Naphthalene	0.16		mg/kg	0.038	0.023	1		
Surrogate			% Recovery	Qualifier		ptance iteria		
Nitrobenzene-d5			48		2	23-120		
2-Fluorobiphenyl			43		3	80-120		
4-Terphenyl-d14			42		1	8-120		

		Serial_No	:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-07	Date Collected:	05/24/24 08:30
Client ID:	136N-SB11-2.0-2.5	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	: EPA 3546
Analytical Method:	1,8270E	Extraction Date:	05/31/24 07:52
Analytical Date:	06/01/24 07:17		
Analyst:	IM		
Percent Solids:	85%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Naphthalene	0.16		mg/kg	0.039	0.024	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			64		2	3-120
2-Fluorobiphenyl			51		3	0-120
4-Terphenyl-d14			52		1	8-120

		Serial_No	:06042415:40
Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24
	SAMPLE RESULTS		
Lab ID:	L2429024-08	Date Collected:	05/24/24 10:50
Client ID:	FB-240524	Date Received:	05/24/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date:	05/30/24 01:21
Analytical Date:	06/02/24 14:19		
Analyst:	AH		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/	MS-SIM - Westborough Lab					
Naphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier		eptance riteria
Nitrobenzene-d5			43		2	23-120
2-Fluorobiphenyl			41			15-120
4-Terphenyl-d14			47		4	41-149

				Serial_No	:06042415:40
Project Name:	PESRM			Lab Number:	L2429024
Project Number:	P044.001.006			Report Date:	06/04/24
		ę	MPLE RESULTS		
Lab ID:	L2429024-08	RE		Date Collected:	05/24/24 10:50
Client ID:	FB-240524			Date Received:	05/24/24
Sample Location:	3144 W.PASSYU	NK AVE.		Field Prep:	Not Specified
Sample Depth:					
Matrix:	Water			Extraction Method	: EPA 3510C
Analytical Method:	1,8270E-SIM			Extraction Date:	06/01/24 23:04
Analytical Date:	06/02/24 12:07				
Analyst:	AH				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Naphthalene	ND		ug/l	0.10	0.02	1
Surrogate			% Recovery	Qualifier		ptance iteria
Nitrobenzene-d5			64		2	23-120
2-Fluorobiphenyl			64		1	5-120
4-Terphenyl-d14			72		4	1-149

Project Name: Project Number:	PESRM P044.001.006		Lab Number: Report Date:	L2429024 06/04/24
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270E-SIM 05/31/24 18:02 JJW		Extraction Method: Extraction Date:	EPA 3510C 05/30/24 01:21

Parameter	Result	Qualifier Uni	ts RL	MDL
Semivolatile Organics by GC/M	IS-SIM - Westbo	brough Lab for s	ample(s): 08	Batch: WG1927316-1
Naphthalene	ND	uç	g/l 0.10	0.02

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
Nitrobenzene-d5	35		23-120	
2-Fluorobiphenyl	29		15-120	
4-Terphenyl-d14	33	Q	41-149	

Project Name:	PESRM		Lab Number:	L2429024
Project Number:	P044.001.006		Report Date:	06/04/24
		Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270E	Extraction Method:	EPA 3546
Analytical Date:	05/31/24 14:15	Extraction Date:	05/31/24 07:52
Analyst:	MRG		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by	GC/MS - Westboroug	n Lab for s	ample(s):	01-07	Batch:	WG1928018-1
Naphthalene	ND		mg/kg	0.032		0.020

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	62	30-120
2,4,6-Tribromophenol	67	10-136
4-Terphenyl-d14	70	18-120

Project Name: Project Number:	PESRM P044.001.006		Lab Number: Report Date:	L2429024 06/04/24
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270E-SIM 06/02/24 11:01 AH		Extraction Method: Extraction Date:	EPA 3510C 06/01/24 23:04

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/M	S-SIM - Westbo	prough Lab for sample	e(s): 08	Batch: WG1928562-1
Naphthalene	ND	ug/l	0.10	0.02

		А	cceptance
Surrogate	%Recovery	Qualifier	Criteria
Nitrobenzene-d5	70		23-120
2-Fluorobiphenyl	68		15-120
4-Terphenyl-d14	71		41-149

Lab Control Sample Analysis Batch Quality Control

Project Name:PESRMProject Number:P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Parameter	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - West								
Naphthalene	31	Q	31	Q	40-140	0	40	

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Nitrobenzene-d5	37		38		23-120	
2-Fluorobiphenyl	31		34		15-120	
4-Terphenyl-d14	35	Q	37	Q	41-149	

Lab Control Sample Analysis Batch Quality Control

Project Name:	PESRM
Project Number:	P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Barran	LCS	0	LCSD	0	%Recovery		0	RPD Limite
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associat	ed sample(s)	: 01-07 Batch:	WG19280	018-2 WG192801	8-3		
Naphthalene	66		66		40-140	0		50

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	al %Recovery	Qual Criteria
2-Fluorophenol	75	75	25-120
Phenol-d6	71	72	10-120
Nitrobenzene-d5	70	71	23-120
2-Fluorobiphenyl	61	62	30-120
2,4,6-Tribromophenol	67	66	10-136
4-Terphenyl-d14	67	65	18-120

Lab Control Sample Analysis Batch Quality Control

Project Name:PESRMProject Number:P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

Parameter	LCS %Recovery Qu	LCSD Ial %Recovery		%Recovery Limits	RPD	RF Qual Lin	
Semivolatile Organics by GC/MS-SIM - West	borough Lab Associa	ted sample(s): 08	Batch: WG1928	562-2 WG19285	562-3		
Naphthalene	54	60		40-140	11	4	0

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria	
Nitrobenzene-d5	62	67	23-120	
2-Fluorobiphenyl	63	62	15-120	
4-Terphenyl-d14	80	72	41-149	

INORGANICS & MISCELLANEOUS

Project Name: PESRM Project Number: P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-01 136N-SB18-1.0-1.5 3144 W.PASSYUNK AVE.							Received:	05/24/24 10:22 05/24/24 Not Specified	2
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	86.4		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Serial	No:06042415:40
Contai	

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-02 136N-SB17-1.5-2.0 3144 W.PASSYUNK AVE.						Date Collected:05/24/24 1Date Received:05/24/24Field Prep:Not Specifier)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	87.1		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-03 136N-SB16-2.0-2.5 3144 W.PASSYUNK AVE.							Received:	05/24/24 09:54 05/24/24 Not Specified	Ļ
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	83.9		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Serial No:06042415:40

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-04 136N-SB15-1.0-1.4 3144 W.PASSYUN	-				Date Received: 0		05/24/24 09:32 05/24/24 Not Specified	2
Sample Depth: Matrix:	Soil								
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - Wes	stborough Lab								
olids, Total	86.2	%	0.100	NA	1	-	05/25/24 04:54	121,2540G	WJM

Serial No:06042415:40

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-05 136N-SB13-1.0-1.5 3144 W.PASSYUNK AVE.							Received:	05/24/24 09:13 05/24/24 Not Specified	3
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	85.8		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Serial	No:06042415:40
Contai	

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-06 136N-SB12-3.0-3.5 3144 W.PASSYUNK AVE.						Date Collected:05/24/24 (Date Received:05/24/24 (Field Prep:Not Speci			
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	87.1		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Project Name:PESRMProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2429024-0 136N-SB11- 3144 W.PAS	-2.0-2.5	AVE.					Received:	05/24/24 08:30 05/24/24 Not Specified)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Solids, Total	84.5		%	0.100	NA	1	-	05/25/24 04:54	4 121,2540G	WJM

Project Name:	PESRM	L	ab Duplicate Analy Batch Quality Control		La	ab Numbe	e r: L2429024
Project Number:	P044.001.006				R	eport Date	e: 06/04/24
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab Associated sample	e(s): 01-07	QC Batch ID: WG1925709-1	QC Sample:	L2429225-01	Client ID: DUP Sample
Solids, Total	73.4	72.9	%	1	20

Project Name:PESRMProject Number:P044.001.006

Serial_No:06042415:40 *Lab Number:* L2429024 *Report Date:* 06/04/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2429024-01A	Vial MeOH preserved	А	NA		5.2	Y	Absent		PA-8260HLW(14)
L2429024-01B	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-01C	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-01D	Glass 120ml/4oz unpreserved	А	NA		5.2	Υ	Absent		PA-PAH(14)
L2429024-01E	Plastic 120ml unpreserved	А	NA		5.2	Υ	Absent		TS(7)
L2429024-02A	Vial MeOH preserved	А	NA		5.2	Υ	Absent		PA-8260HLW(14)
L2429024-02B	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-02C	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-02D	Glass 120ml/4oz unpreserved	А	NA		5.2	Y	Absent		PA-PAH(14)
L2429024-02E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-03A	Vial MeOH preserved	А	NA		5.2	Y	Absent		PA-8260HLW(14)
L2429024-03B	Vial water preserved	А	NA		5.2	Υ	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-03C	Vial water preserved	А	NA		5.2	Υ	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-03D	Glass 120ml/4oz unpreserved	А	NA		5.2	Y	Absent		PA-PAH(14)
L2429024-03E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-04A	Vial MeOH preserved	А	NA		5.2	Υ	Absent		PA-8260HLW(14)
L2429024-04B	Vial water preserved	А	NA		5.2	Υ	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-04C	Vial water preserved	А	NA		5.2	Υ	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-04D	Glass 120ml/4oz unpreserved	А	NA		5.2	Υ	Absent		PA-PAH(14)
L2429024-04E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-05A	Vial MeOH preserved	А	NA		5.2	Y	Absent		PA-8260HLW(14)
L2429024-05B	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-05C	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)

Project Name:PESRMProject Number:P044.001.006

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2429024-05D	Glass 120ml/4oz unpreserved	А	NA		5.2	Y	Absent		PA-PAH(14)
L2429024-05E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-06A	Vial MeOH preserved	А	NA		5.2	Y	Absent		PA-8260HLW(14)
L2429024-06B	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-06C	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-06D	Glass 120ml/4oz unpreserved	А	NA		5.2	Y	Absent		PA-PAH(14)
L2429024-06E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-07A	Vial MeOH preserved	А	NA		5.2	Y	Absent		PA-8260HLW(14)
L2429024-07B	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-07C	Vial water preserved	А	NA		5.2	Y	Absent	25-MAY-24 01:34	PA-8260HLW(14)
L2429024-07D	Glass 120ml/4oz unpreserved	А	NA		5.2	Y	Absent		PA-PAH(14)
L2429024-07E	Plastic 120ml unpreserved	А	NA		5.2	Y	Absent		TS(7)
L2429024-08A	Vial HCI preserved	А	NA		5.2	Y	Absent		PA-8260(14)
L2429024-08B	Vial HCI preserved	А	NA		5.2	Y	Absent		PA-8260(14)
L2429024-08C	Vial HCI preserved	А	NA		5.2	Y	Absent		PA-8260(14)
L2429024-08D	Amber 100ml unpreserved	А	7	7	5.2	Y	Absent		PA-PAHSIM-RVT(7)
L2429024-08E	Amber 100ml unpreserved	А	7	7	5.2	Y	Absent		PA-PAHSIM-RVT(7)
L2429024-09A	Vial HCI preserved	А	NA		5.2	Y	Absent		PA-8260(14)
L2429024-09B	Vial HCI preserved	А	NA		5.2	Y	Absent		PA-8260(14)

Project Name: PESRM

Project Number: P044.001.006

Lab Number: L2429024

Report Date: 06/04/24

GLOSSARY

Acronyms

DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24

Footnotes

v	v	u	v	-

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:	PESRM	Lab Number:	L2429024
Project Number:	P044.001.006	Report Date:	06/04/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: PESRM Project Number: P044.001.006

 Lab Number:
 L2429024

 Report Date:
 06/04/24

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

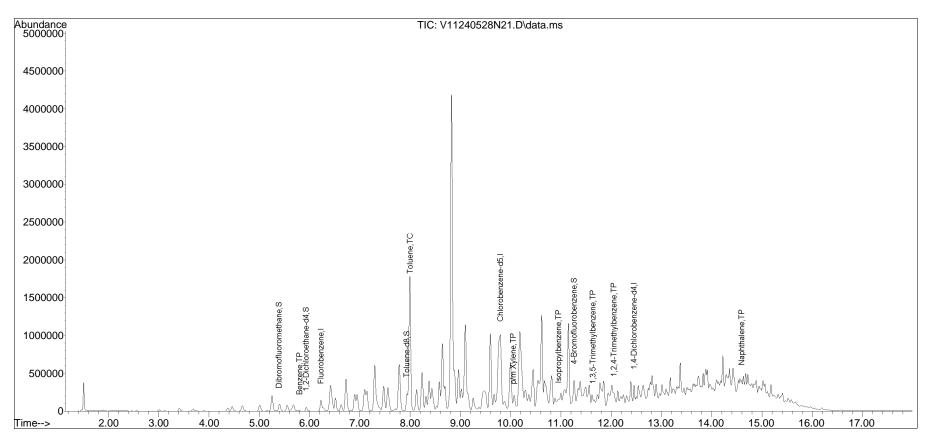
Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**


For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Alexan	CHAIN OF	CU	STO	DY PA		OF	Date I	Rec'd in	Lab:	51	241	24		ALP	A Job	#: 1	124290	24
Other samples have been provided specific Requirements/Comments/Detection Limits: Pile all solution File Other Project Specific Requirements/Comments/Detection Limits: Pile all solution File ALPRA Lab ID Sample ID Other Traphay, LDYY File ALPRA Lab ID Sample ID Other Traphay, LDYY File ALPRA Lab ID Sample ID Other Traphay, LDYY File ALPRA Lab ID Sample ID Other Traphay, LDYY File ALPRA Lab ID Sample ID Other Traphay, LDYY Sample Sampler's Color 136, N - 5B K3 - 1.0 - 1.5 6 /24/24 10: 2.2 50 File -02 136, N - 5B K3 - 1.0 - 1.5 11: 32 X 1 1 1 -03 136, N - 5B K3 - 1.0 - 1.5 11: 32 X 1	1																	
		Project N	ame: PES	RM			D F/	AX.	þ	EMAIL				🗆 San	ne as Cli	ent info	PO #:	
and the second s	THE R. LEWIS CO., LANSING MICH.				KUMAN	KAVE.	CI AD	DEx		Add'i D	eliveral	bles						_
Client Torrady	hase Enomeering	Project #:	P044.0	21.006	Profest					ements			its					
Address: 100 Ca	nal Pointe Riva						State /	Fed Pro	gram		C	riteria	_					
and the second se						-		-	-						-		-	
		Turn-A	round Tir	ne														
Fax:		Xstanda	ed . 17	DUSU										-				
Email: MICK. SU	ala Cterraphase.com					VALPOHNUT (-	100	1	1	11	/	1	11	11	1	The states of	
These samples ha	we been previously analyzed by Alpha	1.1			inne.		YS!	828		/ /		1	1	/	/ /	1	MPLE HAND	LING
ALPHA Lab ID					Sample	Sampler's	TT 1185210			11	/	//	1	1	[]	Pre	Lab to do servation Lab to do se specity below)	
	Sample ID		Date	Time			_	1	[]	/	11	/	1	11	/ S	ample S	pecific Comm	nents
	136N-5B18-1.0-1	. 5	5/24/24	10.22	50	FJU				_		_		_	-			
	136N-5B17 -1.5-2	2.0	1		1	1		_				_						_
-03	136 N-5016-20-2.	5		9:54			X											
-04	1361-5315-1.0-1.	5		9:32			X											
-05	136N- 5813- 1.0-1.	5		9.13			X									-		
-06	136N - 5BIZ - 3.0-3	15		8:51			X											
-07	136N- 5B11 - 2.0-2	2.5		8.30	5		X											
-08	FB-240524			10:50	FB		X											
-09	10-240524		V	11:00	TB	V	X											
			-		-	RULL Shi	Wist	- 51	24/74	-		-	-	-	-			
				Γ		and the state of t		51	-ued						Ple	ase prin	t clearty, legib	ly and co
	-				-										in a	and luma	mples can not around time cl	lock will r
	Ellag		ished By:	JEI	5/24	124 1135	Jac	to Al	eceived	By		5/	Date / / //	Time 24 //.	15 All	samples ha's Ter	ny ambiguities submitted an ms and Cond	e subject
		1	12	1/1C	1 30	- 0	4	01	1.0	17	-0	SO	·Y-2	YN	A See	e revers	e side.	

Data Path : K:\VOA111\2024\240528N\
Data File : V11240528N21.D
Acq On : 29 May 2024 04:15 am
Operator : VOA111:AJK
Sample : L2429024-05,31,5.56,5,,B
Misc : WG1927197,ICAL20962
ALS Vial : 21 Sample Multiplier: 1

Quant Time: May 29 10:09:56 2024
Quant Method : K:\VOA111\2024\240528N\V111_240321N_8260.m
Quant Title : VOLATILES BY GC/MS

- QLast Update : Fri Mar 22 12:08:01 2024
- Response via : Initial Calibration
- Sub List : 8260-PA_ShortList PA Short list528N02.D•

V111_240321N_8260.m Wed May 29 16:56:28 2024

ANALYTICAL REPORT

Lab Number:	L2462828
Client:	Terraphase Engineering Inc.
	1100 Canal Pointe Boulevard
	Suite 100
	Princeton, NJ 08540
ATTN:	Nick Scala
Phone:	(609) 236-8171
Project Name:	PESRM-BDH
Project Number:	P044.001.006
Report Date:	11/13/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab Number:	L2462828
Report Date:	11/13/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2462828-01	136N-SB27-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 10:30	10/28/24
L2462828-02	136N-SB27-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 10:35	10/28/24
L2462828-03	136N-SB21-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 10:50	10/28/24
L2462828-04	136N-SB21-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 10:55	10/28/24
L2462828-05	AOI7-BH-08-2019R-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 11:10	10/28/24
L2462828-06	136N-SB15R-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 11:25	10/28/24
L2462828-07	136N-SB26-0.5-1.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 11:40	10/28/24
L2462828-08	136N-SB26-0.5-1.0D	SOIL	3144 W.PASSYUNK AVE.	10/28/24 11:42	10/28/24
L2462828-09	136N-SB26-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 11:45	10/28/24
L2462828-10	136N-SB22-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:05	10/28/24
L2462828-11	136N-SB22-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:10	10/28/24
L2462828-12	136N-SB23-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:20	10/28/24
L2462828-13	136N-SB23-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:25	10/28/24
L2462828-14	136N-SB24-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:35	10/28/24
L2462828-15	136N-SB24-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:40	10/28/24
L2462828-16	136N-SB24-4.0-4.5D	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:42	10/28/24
L2462828-17	136N-SB25-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 12:55	10/28/24
L2462828-18	136N-SB25-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 13:00	10/28/24
L2462828-19	136N-SB25-4.0-4.5D	SOIL	3144 W.PASSYUNK AVE.	10/28/24 13:05	10/28/24
L2462828-20	136N-SB33-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:00	10/28/24
L2462828-21	136N-SB33-4.0-4.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:05	10/28/24
L2462828-22	136N-SB29-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:27	10/28/24
L2462828-23	136N-SB29-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:30	10/28/24
P2462828124	136N-SB31-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:50	10/28/24

Alpha			Sample	Serial_N Collection	o:11132411:18
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2462828-25	136N-SB31-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 14:55	10/28/24
L2462828-26	136N-SB32-0.5-1.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:05	10/28/24
L2462828-27	136N-SB32-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:09	10/28/24
L2462828-28	136N-SB30-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:15	10/28/24
L2462828-29	136N-SB30-2.0-2.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:20	10/28/24
L2462828-30	136N-SB28-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:25	10/28/24
L2462828-31	136N-SB28-2.5-3.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:30	10/28/24
L2462828-32	136N-SB34-1.0-1.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:45	10/28/24
L2462828-33	136N-SB34-4.5-5.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:50	10/28/24
L2462828-34	136N-SB36-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 15:55	10/28/24
L2462828-35	136N-SB36-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 16:00	10/28/24
L2462828-36	136N-SB35-1.5-2.0	SOIL	3144 W.PASSYUNK AVE.	10/28/24 16:05	10/28/24
L2462828-37	136N-SB35-3.0-3.5	SOIL	3144 W.PASSYUNK AVE.	10/28/24 16:10	10/28/24
L2462828-38	FB-241028	WATER	3144 W.PASSYUNK AVE.	10/28/24 16:20	10/28/24
L2462828-39	TB-241028	SOIL	3144 W.PASSYUNK AVE.	10/28/24 16:25	10/28/24

Project Name: PESRM-BDH Project Number: P044.001.006

Lab Number: L2462828 Report Date: 11/13/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:PESRM-BDHProject Number:P044.001.006

 Lab Number:
 L2462828

 Report Date:
 11/13/24

Case Narrative (continued)

Report Submission

November 13, 2024: This final report includes the results of the following analyses: L2462828-28 and -29: Volatile Organics Additional requests will be reported separately.

November 12, 2024: This preliminary report includes the results of the following analyses: L2462828-22, -23, -24, -25, -26, -27, -30, -31, -36 and -37: Volatile Organics

November 04, 2024: This is a preliminary report. Please note that your project has contingency samples on hold. Contact your project manager to request additional analyses within 3 business days of receiving this report. Requests made after this time frame will be reported separately.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2462828-20: The sample identified as "136N-SB33-1.0-1.5" on the chain of custody was identified as "139N-SB33-1.0-1.5" on the container label. At the client's request, the sample is reported as "136N-SB33-1.0-1.5".

L2462828-21: The sample identified as "136N-SB33-4.0-4.5" on the chain of custody was identified as "139N-SB33-4.0-4.5" on the container label. At the client's request, the sample is reported as "136N-SB33-4.0-4.5".

Volatile Organics

L2462828-03 and -07: One or more of the internal standard recoveries is outside the acceptance criteria; however, the internal standard is within criteria for the target compounds; therefore, the results are reported. L2462828-03: The surrogate recoveries are outside the method acceptance criteria for toluene-d8 (152%)

L2462828

11/13/24

Lab Number:

Report Date:

Project Name: PESRM-BDH Project Number: P044.001.006

Case Narrative (continued)

and 4-bromofluorobenzene (229%) due to interference with the Internal Standard.

L2462828-06: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (138%) and 4bromofluorobenzene (379%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-09: The surrogate recoveries are outside the method acceptance criteria for 1,2-dichloroethane-d4 (66%) and dibromofluoromethane (59%) due to interference with the Internal Standard.

L2462828-09: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (188%) and 4bromofluorobenzene (1028%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-12: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (139%) and 4bromofluorobenzene (227%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-13: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (133%) and 4bromofluorobenzene (279%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-14: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (328%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-15: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (173%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-16: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (166%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-17: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (154%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Project Name: PESRM-BDH Project Number: P044.001.006 Lab Number: L2462828 Report Date: 11/13/24

Case Narrative (continued)

L2462828-18: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (178%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-19: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (142%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-19: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

L2462828-23: The surrogate recovery is outside the acceptance criteria for toluene-d8 (242%) and 4bromofluorobenzene (253%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-25: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (276%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2462828-26: The internal standard (IS) response(s) for chlorobenzene-d5 (32%), and 1,4-dichlorobenzened4 (15%) and the surrogate recoveries for toluene-d8 (371%) and 4-bromofluorobenzene (377%) were outside the acceptance criteria due to obvious interferences. A copy of the chromatogram is included as an attachment to this report. The sample was analyzed as a High Level Methanol in order to quantitate results within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial Low Level analysis; however, since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias. The results of both analyses are reported.

L2462828-26: Differences were noted between the results of the Volatile Organics by EPA Method 5035/8260 High and Low Level analyses which have been attributed to vial discrepancies.

L2462828-29: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (194%) and 4bromofluorobenzene (165%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Project Name:PESRM-BDHProject Number:P044.001.006

 Lab Number:
 L2462828

 Report Date:
 11/13/24

Case Narrative (continued)

L2462828-37: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (205%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 11/13/24

ORGANICS

VOLATILES

		Serial_N	o:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-03	Date Collected:	10/28/24 10:50
Client ID:	136N-SB21-1.5-2.0	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	10/30/24 14:04		
Analyst:	JIC		
Percent Solids:	88%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - We	estborough Lab					
Benzene	0.00070	J	mg/kg	0.00080	0.00026	1
Toluene	0.00088	J	mg/kg	0.0016	0.00087	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			112		7	0-130
Toluene-d8			152	Q	7	0-130
4-Bromofluorobenzene			229	Q	7	0-130
Dibromofluoromethane			97		7	0-130

		Seri	al_No:11132411:18
Project Name:	PESRM-BDH	Lab Numb	er: L2462828
Project Number:	P044.001.006	Report Da	te: 11/13/24
	SAM	PLE RESULTS	
Lab ID: Client ID: Sample Location:	L2462828-04 136N-SB21-3.0-3.5 3144 W.PASSYUNK AVE.	Date Collect Date Receiv Field Prep:	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/30/24 14:24 JIC 87%		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab				
Benzene	0.059	mg/kg	0.031	0.010	1
Toluene	0.078	mg/kg	0.063	0.034	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		109		7	0-130
Toluene-d8		109		7	0-130
4-Bromofluorobenzene		129		7	0-130
Dibromofluoromethane		95		7	0-130

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-05 D	Date Collected:	10/28/24 11:10
Client ID:	AOI7-BH-08-2019R-2.0-2.5	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	10/30/24 14:45		
Analyst:	JIC		

65%

Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Benzene	26.		mg/kg	0.098	0.033	2
Toluene	0.56		mg/kg	0.20	0.11	2
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			110		7	0-130
Toluene-d8			99		7	0-130
4-Bromofluorobenzene			100		7	0-130
Dibromofluoromethane			96		7	0-130

		Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number: L2462828		
Project Number:	P044.001.006	Report Date: 11/13/24		
	SAMPLE RESULTS			
Lab ID: Client ID:	L2462828-06 136N-SB15R-4.0-4.5	Date Collected: 10/28/24 11:25 Date Received: 10/28/24		
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified		
Sample Depth:				
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/30/24 15:05 JIC 78%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab				
Benzene	0.0013	mg/kg	0.00079	0.00026	1
Toluene	ND	mg/kg	0.0016	0.00086	1
Surrogate		% Recover	y Qualifier		ptance teria
1,2-Dichloroethane-d4		110		7	0-130
Toluene-d8		138	Q	7	0-130
4-Bromofluorobenzene		379	Q	7	0-130
Dibromofluoromethane		97		7	0-130

		Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828	
Project Number:	P044.001.006	Report Date:	11/13/24	
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Sample Depth:	L2462828-07 136N-SB26-0.5-1.0 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 11:40 10/28/24 Not Specified	
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/30/24 15:26 JIC 94%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	 Westborough Lab 					
Benzene	0.0016		mg/kg	0.00066	0.00022	1
Toluene	ND		mg/kg	0.0013	0.00071	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			110		7	0-130
Toluene-d8			105		7	0-130
4-Bromofluorobenzene			107		7	0-130
Dibromofluoromethane			91		7	0-130

			Serial_N	o:11132411:18
Project Name:	PESRM-BDH		Lab Number:	L2462828
Project Number:	P044.001.006		Report Date:	11/13/24
		SAMPLE RESULTS		
Lab ID:	L2462828-08		Date Collected:	10/28/24 11:42
Client ID:	136N-SB26-0.5-1.0D		Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	10/30/24 15:46			
Analyst:	JIC			
Percent Solids:	95%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab				
Benzene	0.0014	mg/kg	0.00078	0.00026	1
Toluene	ND	mg/kg	0.0016	0.00085	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		107		7	0-130
Toluene-d8		101		7	0-130
4-Bromofluorobenzene		111		7	0-130
Dibromofluoromethane		95		7	0-130

		Serial_No	Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828		
Project Number:	P044.001.006	Report Date:	11/13/24		
	SAMPLE RESU	JLTS			
Lab ID: Client ID: Sample Location:	L2462828-09 136N-SB26-4.0-4.5 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 11:45 10/28/24 Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/30/24 16:07 JIC 86%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
Benzene	0.0026		mg/kg	0.00051	0.00017	1
Toluene	0.0053		mg/kg	0.0010	0.00055	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			66	Q	7	0-130
Toluene-d8			188	Q	7	0-130
4-Bromofluorobenzene			1030	Q	7	0-130
Dibromofluoromethane			59	Q	7	0-130

		Serial_No	o:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-10 D	Date Collected:	10/28/24 12:05
Client ID:	136N-SB22-1.5-2.0	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	10/30/24 16:27		
Analyst:	JIC		
Percent Solids:	90%		

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	h - Westborough Lab				
Benzene	320	mg/kg	2.6	0.88	100
Toluene	140	mg/kg	5.3	2.9	100
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		107		7	0-130
Toluene-d8		103		7	0-130
4-Bromofluorobenzene		107		7	0-130
Dibromofluoromethane		92		7	0-130

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-11 D	Date Collected:	10/28/24 12:10
Client ID:	136N-SB22-4.0-4.5	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	11/01/24 05:08		
Analyst:	JIC		
Percent Solids:	96%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Benzene	140		mg/kg	1.3	0.44	50
Toluene	22.		mg/kg	2.7	1.4	50
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			98		-	70-130
Toluene-d8			111		-	70-130
4-Bromofluorobenzene			113		-	70-130
Dibromofluoromethane			89		-	70-130

			Serial_No:11132411:18		
Project Name:	PESRM-BDH		Lab Number:	L2462828	
Project Number:	P044.001.006		Report Date:	11/13/24	
	SA	MPLE RESULTS			
Lab ID:	L2462828-12		Date Collected:	10/28/24 12:20	
Client ID:	136N-SB23-1.5-2.0		Date Received:	10/28/24	
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil				
Analytical Method:	1,8260D				
Analytical Date:	10/31/24 11:48				
Analyst:	LAC				
Percent Solids:	87%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - Westb	orough Lab					
Benzene	1.6		mg/kg	0.053	0.018	1
Toluene	0.93		mg/kg	0.11	0.058	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			110		7	0-130
Toluene-d8			139	Q	7	0-130
4-Bromofluorobenzene			227	Q	7	′0-130
Dibromofluoromethane			96		7	′0-130

		Serial_N	Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828		
Project Number:	P044.001.006	Report Date:	11/13/24		
	SAMPLE RES	ULTS			
Lab ID: Client ID: Sample Location:	L2462828-13 136N-SB23-3.0-3.5 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 12:25 10/28/24 Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/31/24 12:09 LAC 89%				

Parameter	Result G	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab				
Benzene	0.88	mg/kg	0.042	0.014	1
Toluene	1.1	mg/kg	0.083	0.045	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		108		7	0-130
Toluene-d8		133	Q	7	0-130
4-Bromofluorobenzene		279	Q	7	0-130
Dibromofluoromethane		93		7	0-130

			Serial_No:11132411:18			
Project Name:	PESRM-BDH		Lab Number:	L2462828		
Project Number:	P044.001.006		Report Date:	11/13/24		
		SAMPLE RESULTS				
Lab ID:	L2462828-14		Date Collected:	10/28/24 12:35		
Client ID:	136N-SB24-1.0-1.5		Date Received:	10/28/24		
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Soil					
Analytical Method:	1,8260D					
Analytical Date:	10/31/24 12:29					
Analyst:	LAC					
Percent Solids:	72%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 High - Westborough Lab								
Benzene	1.3		mg/kg	0.058	0.019	1		
Toluene	0.69		mg/kg	0.12	0.063	1		
Surrogate			% Recovery	Qualifier		ptance iteria		
1,2-Dichloroethane-d4			106		7	0-130		
Toluene-d8			120		7	0-130		
4-Bromofluorobenzene			328	Q	7	0-130		
Dibromofluoromethane			93		7	0-130		

		Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828	
Project Number:	P044.001.006	Report Date:	11/13/24	
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L2462828-15 136N-SB24-4.0-4.5 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 12:40 10/28/24 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/01/24 04:37 JIC 86%			

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	 Westborough Lab 				
Benzene	0.0036	mg/kg	0.00057	0.00019	1
Toluene	ND	mg/kg	0.0011	0.00062	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		103		7	0-130
Toluene-d8		112		7	0-130
4-Bromofluorobenzene		173	Q	7	0-130
Dibromofluoromethane		95		7	0-130

		Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828	
Project Number:	P044.001.006	Report Date:	11/13/24	
	SAMPLE RESULTS			
Lab ID:	L2462828-16	Date Collected:	10/28/24 12:42	
Client ID:	136N-SB24-4.0-4.5D	Date Received:	10/28/24	
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	10/31/24 10:47			
Analyst:	LAC			
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
Benzene	0.00066	J	mg/kg	0.00099	0.00033	1
Toluene	ND		mg/kg	0.0020	0.0011	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			107		7	0-130
Toluene-d8			116		7	0-130
4-Bromofluorobenzene			166	Q	7	0-130
Dibromofluoromethane			95		7	0-130

			Serial_No:11132411:18		
Project Name:	PESRM-BDH		Lab Number:	L2462828	
Project Number:	P044.001.006		Report Date:	11/13/24	
	SAMP	LE RESULTS			
Lab ID: Client ID: Sample Location:	L2462828-17 136N-SB25-1.0-1.5 3144 W.PASSYUNK AVE.		Date Collected: Date Received: Field Prep:	10/28/24 12:55 10/28/24 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/31/24 12:50 LAC 82%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - We	estborough Lab					
Benzene	0.064		mg/kg	0.036	0.012	1
Toluene	0.20		mg/kg	0.073	0.039	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			105		7	/0-130
Toluene-d8			126		7	0-130
4-Bromofluorobenzene			154	Q	7	0-130
Dibromofluoromethane			94		7	0-130

		Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number: L2462828		
Project Number:	P044.001.006	Report Date: 11/13/24		
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L2462828-18 136N-SB25-4.0-4.5 3144 W.PASSYUNK AVE.	Date Collected:10/28/24 13:00Date Received:10/28/24Field Prep:Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 10/31/24 13:10 LAC 86%			

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab				
Benzene	0.12	mg/kg	0.033	0.011	1
Toluene	0.090	mg/kg	0.067	0.036	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		104		7	0-130
Toluene-d8		125		7	0-130
4-Bromofluorobenzene		178	Q	7	0-130
Dibromofluoromethane		92		7	0-130

		Serial_No:11132411:18			
Project Name:	PESRM-BDH	Lab Number:	L2462828		
Project Number:	P044.001.006	Report Date:	11/13/24		
	SAMPLE RESULTS				
Lab ID:	L2462828-19	Date Collected:	10/28/24 13:05		
Client ID:	136N-SB25-4.0-4.5D	Date Received:	10/28/24		
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified		
Sample Depth:					
Matrix:	Soil				
Analytical Method:	1,8260D				
Analytical Date:	10/31/24 13:31				
Analyst:	LAC				
Percent Solids:	84%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 High - Westborough Lab								
Benzene	0.096		mg/kg	0.035	0.012	1		
Toluene	0.042	J	mg/kg	0.071	0.038	1		
Surrogate			% Recovery	Qualifier	Accep Crit	otance teria		
1,2-Dichloroethane-d4			104		7()-130		
Toluene-d8			107		70)-130		
4-Bromofluorobenzene			142	Q	70)-130		
Dibromofluoromethane			93		70)-130		

		Serial_N	Serial_No:11132411:18		
Project Name:	PESRM-BDH	Lab Number:	L2462828		
Project Number:	P044.001.006	Report Date:	11/13/24		
	SAMPLE	RESULTS			
Lab ID: Client ID: Sample Location:	L2462828-22 136N-SB29-1.0-1.5 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 14:27 10/28/24 Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 19:54 JIC 82%				

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab				
Benzene	7.4	mg/kg	0.077	0.026	1
Toluene	0.88	mg/kg	0.15	0.084	1
Surrogate		% Recovery	Qualifier		ptance teria
1,2-Dichloroethane-d4		103		7	0-130
Toluene-d8		120		7	0-130
4-Bromofluorobenzene		110		7	0-130
Dibromofluoromethane		100		7	0-130

			Serial_N	p:11132411:18
Project Name:	PESRM-BDH		Lab Number:	L2462828
Project Number:	P044.001.006		Report Date:	11/13/24
	SAN	IPLE RESULTS		
Lab ID:	L2462828-23		Date Collected:	10/28/24 14:30
Client ID:	136N-SB29-3.0-3.5		Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	11/07/24 20:20			
Analyst:	JIC			
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High -	Westborough Lab					
Benzene	2.9		mg/kg	0.047	0.016	1
Toluene	3.8		mg/kg	0.095	0.051	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			102		7	70-130
Toluene-d8			242	Q	7	70-130
4-Bromofluorobenzene			253	Q	7	70-130
Dibromofluoromethane			99		7	70-130

		Serial_No:11132411:18
Project Name:	PESRM-BDH	Lab Number: L2462828
Project Number:	P044.001.006	Report Date: 11/13/24
	SAMPLE RESULTS	
Lab ID:	L2462828-24 D	Date Collected: 10/28/24 14:50
Client ID:	136N-SB31-1.0-1.5	Date Received: 10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	
Analytical Method:	1,8260D	
Analytical Date:	11/07/24 19:01	
Analyst:	JIC	
Percent Solids:	89%	

Parameter	Result Qu	alifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab				
Benzene	12.	mg/kg	0.48	0.16	10
Toluene	5.4	mg/kg	0.97	0.53	10
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		99		7	0-130
Toluene-d8		106		7	0-130
4-Bromofluorobenzene		104		7	0-130
Dibromofluoromethane		102		7	0-130

		Serial_No	5:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESU	JLTS	
Lab ID:	L2462828-25	Date Collected:	10/28/24 14:55
Client ID:	136N-SB31-2.5-3.0	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	11/07/24 20:46		
Analyst:	JIC		
Percent Solids:	83%		

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	h - Westborough Lab				
Benzene	0.62	mg/kg	0.040	0.013	1
Toluene	1.0	mg/kg	0.080	0.043	1
		<u> </u>			
Surrogate		% Recovery	Qualifier		ptance teria
1,2-Dichloroethane-d4		99		7	0-130
Toluene-d8		117		7	0-130
4-Bromofluorobenzene		276	Q	7	0-130
Dibromofluoromethane		99		7	0-130

		Serial_N	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RE	SULTS	
Lab ID: Client ID: Sample Location:	L2462828-26 136N-SB32-0.5-1.0 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 15:05 10/28/24 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 22:05 JIC 85%		

Pa	rameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Vo	platile Organics by EPA 5035 Low - W	estborough Lab					
Be	nzene	0.97	E	mg/kg	0.0013	0.00044	1
То	uene	0.16		mg/kg	0.0027	0.0014	1
	Surrogate			% Recovery	Qualifier		ptance iteria
	1,2-Dichloroethane-d4			101		7	0-130
	Toluene-d8			371	Q	7	0-130
	4-Bromofluorobenzene			377	Q	7	0-130
	Dibromofluoromethane			75		7	0-130

		Serial_N	o:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE	RESULTS	
Lab ID:	L2462828-26	Date Collected:	10/28/24 15:05
Client ID:	136N-SB32-0.5-1.0	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	11/08/24 13:35		
Analyst:	JIC		
Percent Solids:	85%		

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	h - Westborough Lab				
Benzene	ND	mg/kg	0.055	0.018	1
Toluene	ND	mg/kg	0.11	0.060	1
Surrogate		% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4		98		7	0-130
Toluene-d8		112		7	0-130
4-Bromofluorobenzene		110		7	0-130
Dibromofluoromethane		95		7	0-130

		Serial_No:11132411:18
Project Name:	PESRM-BDH	Lab Number: L2462828
Project Number:	P044.001.006	Report Date: 11/13/24
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2462828-27 136N-SB32-2.5-3.0 3144 W.PASSYUNK AVE.	Date Collected: 10/28/24 15:09 Date Received: 10/28/24 Field Prep: Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 21:13 JIC 87%	

Parameter	Result C	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Higl	n - Westborough Lab				
Benzene	0.71	mg/kg	0.041	0.013	1
Toluene	0.16	mg/kg	0.081	0.044	1
				_	
Surrogate		% Recovery	Qualifier		eptance iteria
1,2-Dichloroethane-d4		99		7	70-130
Toluene-d8		110		7	70-130
4-Bromofluorobenzene		116		7	70-130
Dibromofluoromethane		100		7	70-130

			Serial_N	p:11132411:18
Project Name:	PESRM-BDH		Lab Number:	L2462828
Project Number:	P044.001.006		Report Date:	11/13/24
		SAMPLE RESULTS		
Lab ID:	L2462828-28		Date Collected:	10/28/24 15:15
Client ID:	136N-SB30-1.0-1.5		Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	11/07/24 19:27			
Analyst:	JIC			
Percent Solids:	92%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab				
Benzene	2.0	mg/kg	0.058	0.019	1
Toluene	1.6	mg/kg	0.12	0.062	1
Surrogate		% Recovery	Qualifier		otance teria
1,2-Dichloroethane-d4		99		7	0-130
Toluene-d8		130		7	0-130
4-Bromofluorobenzene		116		7	0-130
Dibromofluoromethane		100		7	D-130

		Serial_No:11132411:18
Project Name:	PESRM-BDH	Lab Number: L2462828
Project Number:	P044.001.006	Report Date: 11/13/24
	SAMPLE RESULT	S
Lab ID: Client ID: Sample Location:	L2462828-29 136N-SB30-2.0-2.5 3144 W.PASSYUNK AVE.	Date Collected:10/28/24 15:20Date Received:10/28/24Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 18:35 JIC 87%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - Westb	orough Lab					
Benzene	1.0		mg/kg	0.058	0.019	1
Toluene	1.0		mg/kg	0.12	0.062	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			101		7	0-130
Toluene-d8			194	Q	7	0-130
4-Bromofluorobenzene			165	Q	7	′0-130
Dibromofluoromethane			100		7	0-130

			Serial_No	p:11132411:18
Project Name:	PESRM-BDH		Lab Number:	L2462828
Project Number:	P044.001.006		Report Date:	11/13/24
	SAMP	E RESULTS		
Lab ID:	L2462828-30		Date Collected:	10/28/24 15:25
Client ID:	136N-SB28-1.5-2.0		Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	11/08/24 14:01			
Analyst:	JIC			
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - \	Westborough Lab					
Benzene	15.	Е	mg/kg	0.025	0.0082	1
Toluene	0.14		mg/kg	0.049	0.027	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			101		7	0-130
Toluene-d8			122		7	0-130
4-Bromofluorobenzene			114		7	0-130
Dibromofluoromethane			90		7	0-130

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-30 D	Date Collected:	10/28/24 15:25
Client ID:	136N-SB28-1.5-2.0	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	11/07/24 16:47		
Analyst:	JIC		
Percent Solids:	91%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - Westborough Lab							
Benzene	16.		mg/kg	0.12	0.041	5	
Surrogate			% Recovery	Qualifier		ptance iteria	
1,2-Dichloroethane-d4			107		7	0-130	
Toluene-d8			114		7	0-130	
4-Bromofluorobenzene			114		7	0-130	
Dibromofluoromethane			96		7	0-130	

		Serial_No:11132411:18
Project Name:	PESRM-BDH	Lab Number: L2462828
Project Number:	P044.001.006	Report Date: 11/13/24
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2462828-31 D 136N-SB28-2.5-3.0 3144 W.PASSYUNK AVE.	Date Collected:10/28/24 15:30Date Received:10/28/24Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 17:12 JIC 91%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Benzene	790		mg/kg	2.9	0.96	100
Toluene	7.9		mg/kg	5.8	3.1	100
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			110		1	70-130
Toluene-d8			114		7	70-130
4-Bromofluorobenzene			111		7	70-130
Dibromofluoromethane			95		7	70-130

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RES	SULTS	
Lab ID: Client ID: Sample Location:	L2462828-36 136N-SB35-1.5-2.0 3144 W.PASSYUNK AVE.	Date Collected: Date Received: Field Prep:	10/28/24 16:05 10/28/24 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/08/24 14:27 JIC 84%		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab								
D	4 5	"	0.055	0.040				
Benzene	1.5	mg/kg	0.055	0.018	1			
Toluene	0.36	mg/kg	0.11	0.060	1			
Surrogate		% Recovery	Qualifier		ptance iteria			
1,2-Dichloroethane-d4		96		7	70-130			
Toluene-d8		114		7	70-130			
4-Bromofluorobenzene		178	Q	7	70-130			
Dibromofluoromethane		92		7	70-130			

		Serial_No:11132411:18
Project Name:	PESRM-BDH	Lab Number: L2462828
Project Number:	P044.001.006	Report Date: 11/13/24
	SAMPLE RESULTS	5
Lab ID: Client ID: Sample Location:	L2462828-37 136N-SB35-3.0-3.5 3144 W.PASSYUNK AVE.	Date Collected:10/28/24 16:10Date Received:10/28/24Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260D 11/07/24 18:03 JIC 82%	

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab								
Benzene	1.5	mg/kg	0.036	0.012	1			
Toluene	0.44	mg/kg	0.071	0.039	1			
Surrogate		% Recovery	Qualifier		ptance iteria			
1,2-Dichloroethane-d4		109		7	0-130			
Toluene-d8		117		7	0-130			
4-Bromofluorobenzene		205	Q	7	0-130			
Dibromofluoromethane		94		7	0-130			

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-38	Date Collected:	10/28/24 16:20
Client ID:	FB-241028	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	10/31/24 16:28		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	0.75	0.20	1		
Surrogate			% Recovery	Qualifier		ptance teria		
1,2-Dichloroethane-d4			113		7	0-130		
Toluene-d8			103		7	0-130		
4-Bromofluorobenzene			106		7	0-130		
Dibromofluoromethane			127		7	0-130		

Analyst:

MJV

		Serial_N	o:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-39	Date Collected:	10/28/24 16:25
Client ID:	TB-241028	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	10/31/24 10:05		
Analyst:	LAC		
Percent Solids:	Results reported on an 'AS RECEIVED' basis.		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
Benzene	ND		mg/kg	0.00050	0.00017	1		
Toluene	ND		mg/kg	0.0010	0.00054	1		
Surrogate			% Recovery	Qualifier		ptance teria		
1,2-Dichloroethane-d4			107		7	0-130		
Toluene-d8			96		7	0-130		
4-Bromofluorobenzene			94		7	0-130		
Dibromofluoromethane			98		7	0-130		

		Serial_No	p:11132411:18
Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24
	SAMPLE RESULTS		
Lab ID:	L2462828-39	Date Collected:	10/28/24 16:25
Client ID:	TB-241028	Date Received:	10/28/24
Sample Location:	3144 W.PASSYUNK AVE.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	10/31/24 10:26		
Analyst:	LAC		
Percent Solids:	Results reported on an 'AS RECEIVED' basis.		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
Benzene	ND		mg/kg	0.025	0.0083	1
Toluene	ND		mg/kg	0.050	0.027	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,2-Dichloroethane-d4			110		7	0-130
Toluene-d8			99		7	0-130
4-Bromofluorobenzene			99		7	0-130
Dibromofluoromethane			95		7	0-130

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Analytical Method:	1,8260D
Analytical Date:	10/30/24 13:43
Analyst:	JIC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 High	- Westboro	ugh Lab foi	sample(s):	04-05,10	Batch:	WG1991543-5
Benzene	ND		mg/kg	0.025	0.0083	
Toluene	ND		mg/kg	0.050	0.027	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	96		70-130	

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Analytical Method:	1,8260D
Analytical Date:	10/30/24 13:43
Analyst:	JIC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low	- Westborou	igh Lab for	sample(s):	03,06-09	Batch:	WG1991545-5
Benzene	ND		mg/kg	0.00050	0.0001	7
Toluene	ND		mg/kg	0.0010	0.0005	4

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	96		70-130	

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Analytical Method:	1,8260D
Analytical Date:	10/31/24 10:19
Analyst:	PID

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lat	o for sample	e(s): 38	Batch:	WG1991812-5
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	0.75	0.20

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	127		70-130	

Lab Number:	L
Report Date:	

L2462828 11/13/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 10/31/24 09:04 Analyst: MKS

PESRM-BDH

P044.001.006

Project Name:

Project Number:

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Lo	w - Westbor	ough Lab fo	r sample(s):	16,39	Batch: WG1991921-5
Benzene	ND		mg/kg	0.00050	0.00017
Toluene	ND		mg/kg	0.0010	0.00054

		-	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	94		70-130

Lab Number:	L2462828
Report Date:	11/13/24

Project Name:PESRM-BDHProject Number:P044.001.006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/31/24 09:04Analyst:MKS

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Hig WG1991922-5	h - Westbor	ough Lab fo	or sample(s):	12-14,17	7-19,39 Batch:
Benzene	ND		mg/kg	0.025	0.0083
Toluene	ND		mg/kg	0.050	0.027

Surrogate	%Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	94		70-130

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/31/24 21:44Analyst:TMS

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab for	r sample(s):	15	Batch:	WG1991938-5
Benzene	ND		mg/kg	0.000	50	0.00017
Toluene	ND		mg/kg	0.001	0	0.00054

	Accept			
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	103		70-130	

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/31/24 21:44Analyst:TMS

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Hig	jh - Westbo	rough Lab fo	r sample(s):	11	Batch:	WG1991939-5
Benzene	ND		mg/kg	0.025		0.0083
Toluene	ND		mg/kg	0.050		0.027

	Accep			
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/07/24 09:39Analyst:AJK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 High	- Westborou	ugh Lab for	sample(s):	30-31,37	Batch:	WG1994855-5
Benzene	ND		mg/kg	0.025	0.0083	
Toluene	ND		mg/kg	0.050	0.027	

	Acceptance		
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	110		70-130
Toluene-d8	110		70-130
4-Bromofluorobenzene	104		70-130
Dibromofluoromethane	97		70-130

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Analytical Method:	1,8260D
Analytical Date:	11/07/24 18:08
Analyst:	LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High 5	- Westborou	ugh Lab foi	r sample(s):	22-25,27-29	Batch: WG1994924-
Benzene	ND		mg/kg	0.025	0.0083
Toluene	ND		mg/kg	0.050	0.027

	Acceptance		
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	96		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	90		70-130
Dibromofluoromethane	102		70-130

11/13/24

Project Name:	PESRM-BDH	Lab Number:
Project Number:	P044.001.006	Report Date:

Analytical Method:	1,8260D
Analytical Date:	11/07/24 18:08
Analyst:	LAC

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab for	sample(s):	26	Batch:	WG1994998-5
Benzene	ND		mg/kg	0.000	50	0.00017
Toluene	ND		mg/kg	0.001	0	0.00054

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	103		70-130	

Project Name:	PESRM-BDH	Lab Number
Project Number:	P044.001.006	Report Date:

Number:	L2462828
oort Date:	11/13/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/08/24 09:47Analyst:LAC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 High	- Westborg	ough Lab fo	or sample(s):	26,30,36	Batch:	WG1995023-5
Benzene	ND		mg/kg	0.025	0.0083	
Toluene	ND		mg/kg	0.050	0.027	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	108		70-130
Toluene-d8	109		70-130
4-Bromofluorobenzene	107		70-130
Dibromofluoromethane	97		70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 High - We	stborough Lab Asso	clated sample(s): 04-05,10	Batch: V	VG1991543-3 V	WG1991543-4			
-									
Benzene	85		84		70-130	1		30	
Toluene	81		81		70-130	0		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery Q	ual Criteria
1,2-Dichloroethane-d4	104	109	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	99	99	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

 Lab Number:
 L2462828

 Report Date:
 11/13/24

LCS LCSD %Recovery RPD %Recovery %Recovery Parameter Qual Qual Limits RPD Qual Limits Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 03,06-09 Batch: WG1991545-3 WG1991545-4 85 84 Benzene 70-130 30 1 81 81 70-130 Toluene 0 30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery 0	Qual Criteria
1,2-Dichloroethane-d4	104	109	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	99	99	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

		LCS		LC	SD		%Recovery			RPD	
Pa	rameter	%Recovery	Qual	%Rec	overy	Qual	Limits	RPD	Qual	Limits	
Vo	latile Organics by GC/MS - Westborough La	ab Associated	sample(s):	38 Bato	h: WG	1991812-3	WG1991812-4				
	Benzene	91			97		70-130	6		20	
	Toluene	97			00		70-130	3		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	128	120	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	100	102	70-130
Dibromofluoromethane	121	119	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 Low - West	orough Lab Assoc	ciated sample	(s): 16,39 Ba	tch: WG19	91921-3 WG1991	921-4			
Benzene	90		93		70-130	3		30	
Toluene	89		92		70-130	3		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery Qua	l Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	96	98	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

Lab Number:

Lab Number: L2462828 Report Date: 11/13/24

	LCS	I	LCSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual %R	ecovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 High - \	Vestborough Lab Associ	iated sample(s):	12-14,17-19,	39 Batch:	WG1991922-3	WG199192	2-4		
Benzene	90		93		70-130	3		30	
Toluene	89		92		70-130	3		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	96	98	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by EPA 5035 Low - Westbo	orough Lab Asso	clated sample	(s): 15 Batch	: WG19919	38-3 WG1991938	3-4		
_								
Benzene	111		108		70-130	3		30
Toluene	99		97		70-130	2		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	ual %Recovery Qua	l Criteria
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	108	108	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	96	97	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Valatile Organice by EDA 5025 Lligh Ma		isted some	a (a), 11 Datah.	MC40040	20.2 WC40040	20.4		
Volatile Organics by EPA 5035 High - We	siborough Lab Assoc	ated sampl	e(s): IT Batch:	WG 19919	39-3 MG19919	39-4		
Benzene	111		108		70-130	3		30
Toluene	99		97		70-130	2		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qi	ual %Recovery Qua	al Criteria
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	108	108	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	96	97	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %F	Recovery	Qual	Limits	RPD	Qual	Limits	
Velatile Organize by EDA 5025 Lligh Ma	otherough Lab Acces	isted semals(s);	20.24.27	Dotoby V					
Volatile Organics by EPA 5035 High - We	siborough Lab Assoc	ated sample(s):	30-31,37	Batch: V	VG 1994855-3	WG1994855-4			
Benzene	102		103		70-130	1		30	
Toluene	106		107		70-130	1		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	115	110	70-130
Toluene-d8	109	109	70-130
4-Bromofluorobenzene	106	104	70-130
Dibromofluoromethane	101	99	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %	Recovery	Qual	Limits	RPD	Qual	Limits	
					-	-			
Volatile Organics by EPA 5035 High - We	estborough Lab Asso	ciated sample(s)	: 22-25,27-29	Batch:	WG1994924-3	WG1994924-4			
Benzene	85		86		70-130	1		30	
Toluene	81		83		70-130	2		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery G	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	100	96	70-130
Toluene-d8	97	98	70-130
4-Bromofluorobenzene	93	92	70-130
Dibromofluoromethane	104	103	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by EPA 5035 Low - West	orough Lab Asso	ciated sample	(s): 26 Batch	: WG199499	98-3 WG1994998	8-4		
Benzene	85		86		70-130	1		30
Toluene	81		83		70-130	2		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	100	96	70-130
Toluene-d8	97	98	70-130
4-Bromofluorobenzene	93	92	70-130
Dibromofluoromethane	104	103	70-130

Project Name:PESRM-BDHProject Number:P044.001.006

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual 9	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 High - West	borough Lab Asso	ciated sample(s	s): 26,30,36	Batch: V	VG1995023-3	WG1995023-4			
Benzene	107		103		70-130	4		30	
Toluene	113		108		70-130	5		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery G	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	104	106	70-130
Toluene-d8	111	110	70-130
4-Bromofluorobenzene	111	108	70-130
Dibromofluoromethane	98	100	70-130

INORGANICS & MISCELLANEOUS

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-03 136N-SB21- 3144 W.PAS	1.5-2.0	AVE.					Received:	10/28/24 10:50 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	87.8		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-04 136N-SB21-3.0-3. 3144 W.PASSYUN	-				20.10	Received:	10/28/24 10:55 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil					_			
Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
Solids, Total	87.2	%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18
oona.	

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-05 AOI7-BH-08-2019 3144 W.PASSYUN						Received: 1	10/28/24 11:10 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil				Dilution	Date	Data	Anglatical	
Parameter	Result Qualif	ier Units	RL	MDL	Factor	Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	65.2	%	0.100	NA	1	-	10/31/24 20:34	121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-06 136N-SB15R-4.0-4.5 3144 W.PASSYUNK AVE.						Date Received: 1		10/28/24 11:25 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	78.4		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-07 136N-SB26-0.5-1. 3144 W.PASSYUN	-					Received: 1	10/28/24 11:40 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil				Dilution	Date	Date	Anglytical	
Parameter	Result Qualif	ier Units	RL	MDL	Factor	Prepared	Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	94.2	%	0.100	NA	1	-	10/31/24 20:34	121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-08 136N-SB26-0.5-1. 3144 W.PASSYUI						Received: 1	10/28/24 11:42 10/28/24 Not Specified	2
Sample Depth: Matrix:	Soil				Dilution	Dete			
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
Solids, Total	95.2	%	0.100	NA	1	-	10/31/24 20:34	121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-09 136N-SB26-4.0-4.5 3144 W.PASSYUNK AVE.						Date Collected: Date Received: Field Prep:		10/28/24 11:45 10/28/24 Not Specified	5		
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical			
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst		
General Chemistry - Westborough Lab												
Solids, Total	85.6		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB		

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-10 136N-SB22-1.5-2. 3144 W.PASSYUN	-				20.10	Received:	10/28/24 12:05 10/28/24 Not Specified	i
Sample Depth: Matrix:	Soil				Dilution	Dete	5.4		
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	90.4	%	0.100	NA	1	-	10/31/24 20:34	121,2540G	SJB

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-11 136N-SB22-4.0-4. 3144 W.PASSYUN	-				2 410	Received:	10/28/24 12:10 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil					_			
Parameter	Result Qualit	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
Solids, Total	96.1	%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-12 136N-SB23-1.5-2.0 3144 W.PASSYUNK AVE.				Date Received:		10/28/24 12:20 10/28/24 Not Specified			
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	87.3		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-13 136N-SB23-3.0-3 3144 W.PASSYUI						Received:	10/28/24 12:25 10/28/24 Not Specified	i
Sample Depth: Matrix:	Soil								
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - Wes	stborough Lab								
olids, Total	88.9	%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-14 136N-SB24-1.0-1.5 3144 W.PASSYUNK AVE.				Date Collected: Date Received: Field Prep:		10/28/24 12:35 10/28/24 Not Specified	5		
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	72.0		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-15 136N-SB24-4.0-4.5 3144 W.PASSYUNK AVE.				Date Collected: Date Received: Field Prep:		10/28/24 12:40 10/28/24 Not Specified)		
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab									
Solids, Total	85.6		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-16 136N-SB24-4.0-4. 3144 W.PASSYUN					20.10	Received:	10/28/24 12:42 10/28/24 Not Specified	2
Sample Depth: Matrix:	Soil								
Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
Solids, Total	90.0	%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-17 136N-SB25-1.0 3144 W.PASSY						Received:	10/28/24 12:55 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil				Dilution	Date	Date	Analytical	
Parameter	Result Qu	alifier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab								
Solids, Total	82.2	%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-18 136N-SB25-4.0-4 3144 W.PASSYUI	-				20.10	Received:	10/28/24 13:00 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil				B 11 (1	- /			
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
Solids, Total	86.2	%	0.100	NA	1	-	10/31/24 20:34	121,2540G	SJB

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-19 136N-SB25- 3144 W.PAS	4.0-4.5D						Received:	10/28/24 13:05 10/28/24 Not Specified	;
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	83.8		%	0.100	NA	1	-	10/31/24 20:34	4 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-2 136N-SB29- 3144 W.PAS	1.0-1.5	AVE.					Received:	10/28/24 14:27 10/28/24 Not Specified	
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total	81.8		%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-23 136N-SB29-3.0-3 3144 W.PASSYU						Received:	10/28/24 14:30 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil				Dilution	Dete			
Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	89.2	%	0.100	NA	1	-	11/06/24 06:11	1 121,2540G	ODJ

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-24 136N-SB31- 3144 W.PAS					Date Received:		10/28/24 14:50 10/28/24 Not Specified)	
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab	I								
Solids, Total	88.6		%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-25 136N-SB31-2.5-3 3144 W.PASSYUI					2 4.10	Received:	10/28/24 14:55 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil				B 11 (1	- /			
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	82.7	%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-2 136N-SB32- 3144 W.PAS					Date Received:		10/28/24 15:05 10/28/24 Not Specified	i	
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	84.6		%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-27 136N-SB32-2.5 3144 W.PASSY						Received:	10/28/24 15:09 10/28/24 Not Specified	
Sample Depth: Matrix:	Soil				Dilution	Date	Date	Analysian	
Parameter	Result Qu	alifier Units	RL	MDL	Factor	Prepared	Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
Solids, Total	86.7	%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-28 136N-SB30-1.0-1. 3144 W.PASSYUI	-					Received:	10/28/24 15:15 10/28/24 Not Specified	;
Sample Depth: Matrix:	Soil								
Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	91.5	%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-29 136N-SB30-2 3144 W.PAS	30-2.0-2.5				Date Received:		10/28/24 15:20 10/28/24 Not Specified)	
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab	I								
Solids, Total	86.5		%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-30 136N-SB28-1.5-2. 3144 W.PASSYUN	-				20110	Received:	10/28/24 15:25 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil				Dilution	Data			
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
Solids, Total	90.6	%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Serial	No [.] 1	113241	1.18
Contai	110.1	110211	1.10

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-3 136N-SB28- 3144 W.PAS	2.5-3.0	AVE.					Received:	10/28/24 15:30 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	90.9		%	0.100	NA	1	-	11/06/24 18:1	1 121,2540G	SJB

Serial	No:11132411:18

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-3 136N-SB35- 3144 W.PAS	1.5-2.0	AVE.					Received:	10/28/24 16:05 10/28/24 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Dete	- /		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total	84.1		%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Project Name:PESRM-BDHProject Number:P044.001.006

Lab ID: Client ID: Sample Location:	L2462828-37 136N-SB35-3.0-3.4 3144 W.PASSYUN	-				20.10	Received:	10/28/24 16:10 10/28/24 Not Specified)
Sample Depth: Matrix:	Soil					- /			
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	82.2	%	0.100	NA	1	-	11/06/24 06:1	1 121,2540G	ODJ

Lab Duplicate Analysis Batch Quality Control

Project Name:	PESRM-BDH
Project Number:	P044.001.006

ol L

 Lab Number:
 L2462828

 Report Date:
 11/13/24

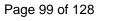
Parameter		Nat	ive Sa	Imple	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Wes	tborough Lab	Associated sample(s):	03-19	9 QC Batch	ID: WG1991680-1	QC Sample:	L2462716-01	Client ID:	DUP Sample
Solids, Total			77.7		76.5	%	2		20
General Chemistry - Wes SB29-1.0-1.5	tborough Lab	Associated sample(s):	22-30),36-37 QC	Batch ID: WG19936	662-1 QC Sa	mple: L2462	828-22 Cli	ent ID: 136N-
Solids, Total			81.8		83.4	%	2		20
General Chemistry - Wes	tborough Lab	Associated sample(s):	31	QC Batch ID:	WG1994043-1 Q	C Sample: L24	464409-01 C	lient ID: D	UP Sample
Solids, Total			91.2		95.4	%	5		20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

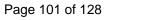
Cooler Information


Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	oler pH pH		deg C	Pres	Seal	Date/Time	Analysis(*)
L2462828-01A	Vial MeOH preserved	В	NA		2.0	Y	Absent		HOLD-8260HLW(14)
L2462828-01B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-01C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-01D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		HOLD-WETCHEM()
L2462828-02A	Vial MeOH preserved	В	NA		2.0	Y	Absent		HOLD-8260HLW(14)
L2462828-02B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-02C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-02D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		HOLD-WETCHEM()
L2462828-03A	Vial MeOH preserved	В	NA		2.0	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-03B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-03C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-03D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		TS(7)
L2462828-04A	Vial MeOH preserved	В	NA		2.0	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-04B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-04C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-04D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		TS(7)
L2462828-05A	Vial MeOH preserved	В	NA		2.0	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-05B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-05C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-05D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		TS(7)

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2462828-06A	Vial MeOH preserved	В	NA		2.0	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-06B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-06C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-06D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		TS(7)
L2462828-07A	Vial MeOH preserved	В	NA		2.0	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-07B	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-07C	Vial water preserved	В	NA		2.0	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-07D	Plastic 120ml unpreserved	В	NA		2.0	Y	Absent		TS(7)
L2462828-08A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-08B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-08C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-08D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-09A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-09B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-09C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-09D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-10A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-10B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-10C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-10D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-11A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-11B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-11C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-11D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-12A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-12B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-12C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-12D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)



Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2462828-13A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-13B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-13C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-13D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-14A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-14B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-14C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-14D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-15A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-15B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-15C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-15D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-16A	Vial MeOH preserved	А	NA		2.1	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-16B	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-16C	Vial water preserved	А	NA		2.1	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-16D	Plastic 120ml unpreserved	А	NA		2.1	Y	Absent		TS(7)
L2462828-17A	Vial MeOH preserved	С	NA		2.3	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-17B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-17C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-17D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		TS(7)
L2462828-18A	Vial MeOH preserved	С	NA		2.3	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-18B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-18C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-18D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		TS(7)
L2462828-19A	Vial MeOH preserved	С	NA		2.3	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-19B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-19C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-19D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		TS(7)

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2462828-20A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14)
L2462828-20B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-20C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-20D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM()
L2462828-21A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14)
L2462828-21B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-21C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-21D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM()
L2462828-22A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-22B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-22C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-22D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-23A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-23B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-23C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-23D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-24A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-24B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-24C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-24D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-25A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-25B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-25C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-25D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-26A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14),PA-8260HLW- BTEX(14),PA-8260H(14)
L2462828-26B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW- BTEX(14),PA-8260H(14)
L2462828-26C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW- BTEX(14),PA-8260H(14)

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2462828-26D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-27A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-27B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-27C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-27D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-28A	Vial MeOH preserved	D	NA		2.2	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-28B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-28C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-28D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		TS(7)
L2462828-29A	Vial MeOH preserved	С	NA		2.3	Y	Absent		PA-8260HLW-BTEX(14)
L2462828-29B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-29C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	PA-8260HLW-BTEX(14)
L2462828-29D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		TS(7)
L2462828-30A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-30B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-30C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-30D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-31A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-31B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-31C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-31D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-32A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14)
L2462828-32B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-32C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:40	HOLD-8260HLW(14)
L2462828-32D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM()
L2462828-33A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14)
L2462828-33B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-33C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:50	HOLD-8260HLW(14)

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2462828-33D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM()
L2462828-34A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14)
L2462828-34B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-34C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-34D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM()
L2462828-35A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14)
L2462828-35B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-35C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14)
L2462828-35D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM()
L2462828-36A	Vial MeOH preserved	С	NA		2.3	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-36B	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-36C	Vial water preserved	С	NA		2.3	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-36D	Plastic 120ml unpreserved	С	NA		2.3	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-37A	Vial MeOH preserved	D	NA		2.2	Y	Absent		HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-37B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-37C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	HOLD-8260HLW(14),PA-8260HLW-BTEX(14)
L2462828-37D	Plastic 120ml unpreserved	D	NA		2.2	Y	Absent		HOLD-WETCHEM(),TS(7)
L2462828-38A	Vial HCl preserved	С	NA		2.3	Y	Absent		PA-8260-BTEX(14)
L2462828-38B	Vial HCl preserved	С	NA		2.3	Y	Absent		PA-8260-BTEX(14)
L2462828-38C	Vial HCl preserved	С	NA		2.3	Y	Absent		PA-8260-BTEX(14)
L2462828-39A	Vial MeOH preserved	D	NA		2.2	Y	Absent		PA-8260HLW-BTEX(14),PA-8260H(14)
L2462828-39B	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	PA-8260HLW-BTEX(14),PA-8260H(14)
L2462828-39C	Vial water preserved	D	NA		2.2	Y	Absent	29-OCT-24 07:51	PA-8260HLW-BTEX(14),PA-8260H(14)

Project Name: PESRM-BDH

Project Number: P044.001.006

Lab Number: L2462828

Report Date: 11/13/24

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: PESRM-BDH

Project Number: P044.001.006

Lab Number: L2462828 Report Date: 11/13/24

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Footholes

Project Name:	PESRM-BDH	Lab Number:	L2462828
Project Number:	P044.001.006	Report Date:	11/13/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

 Lab Number:
 L2462828

 Report Date:
 11/13/24

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol **EPA 8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, 2,6-Dichlorophenol.

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan T, Endosulfan T, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables). Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

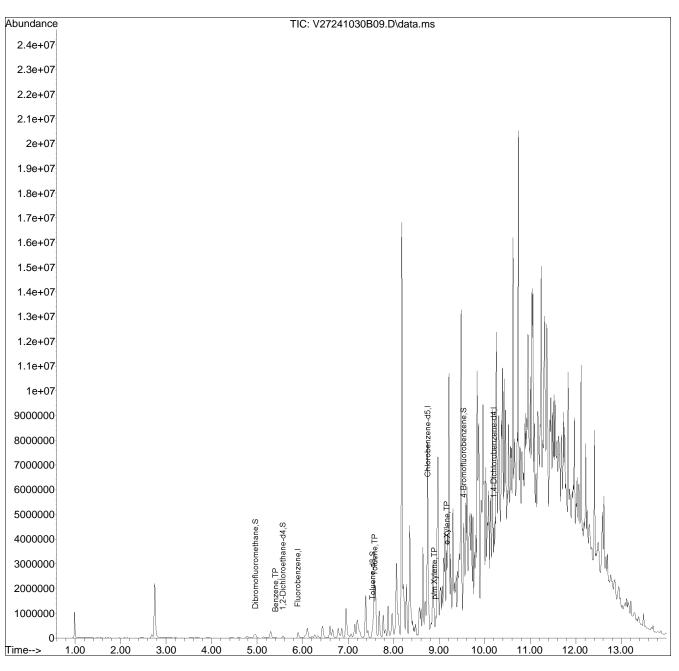
Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

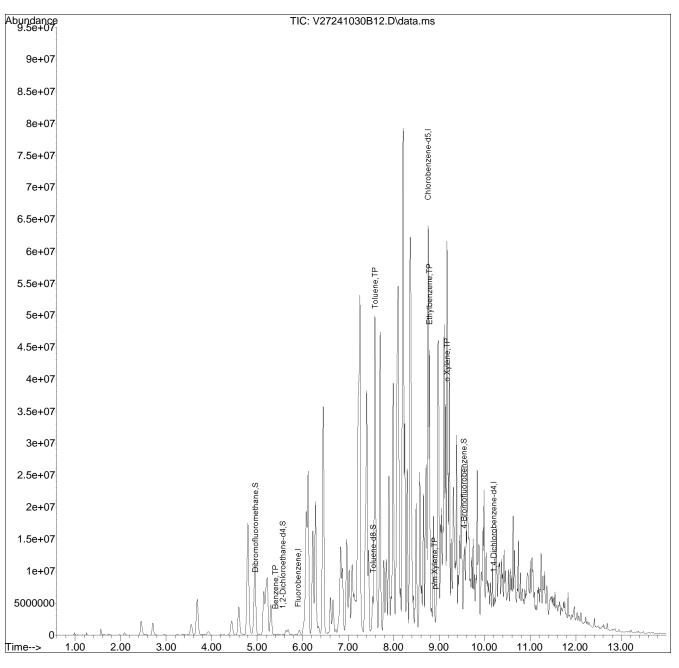
		-						_		S	erial_No:11132411:18
Δυριία	CHAIN OF	CUS	STODY	PAGE	_OF_4_	Date	Rec'd in Lal	b: 10	29/2	4 ALPH	HA JOD #: L2462828
ESTBORO, MA	MANSFIELD, MA	Project	Information			Re	port Informa	ation - Da	ta Deliver	Statement in case of	ng Information
EL 508-898-9220	TEL: 508-822-9300	Project Na		M-BI	SH	-	FAX	EMAI			ne as Client Info PO #:
AX: 508-898-9193 lient Informatio	FAX: 508-822-3288	and the second second	pcation: 3144				ADEx		Deliverable	S	
dress: IOD Co	nase Engineering Inc. anal Pointe Bluel. 14 110, Princeton, NJ 236 8171 ext. 92	Project #: Project Ma	P044 anager: Nick	60) .00 Scala	36		ulatory Req /Fed Progra		s/Report		
180		Classica				-		2			
These samples hav	cala Citraphase-co	1.5	2:	jony contenned of pre		ANALVO	Prove State		1/)	111	SAMPLE HANDLING
a service a service of the service o	DDs to EDD@		nase.com	X-ve H-V	hlid	6	toluna.				Done Not needed Lab to do Preservation Lab to do (Prese specify below)
(Lab Use Only)	Sample ID		Collection Date Tin		and the state of the state of the	1	'	11	11	1111	Sample Specific Comments
2828-01	136N - SB27-1.5	5-2.0	10/28/24/03	o So	MMA	H	H				
02	136N-SB27.4				1	H	H				
03	136 N - SB21-1.					X	X				
04	136 N- SB21 - 3	Charles and the	105			X	x				
05		08-2019				X					
	27/27				++	Ŷ	X				
06	136 N- SBISE-				1	-	and the second s				
07	136 N- 5826-0			-		X	X				
08 09	136 N-5B26-0.	24.01	> 114			X	X				
	136 N- 5B26-4				- (X	X				
10	136N-5822-	1.S-Z.(SV 120	SV	V	A	×				
					ntainer Type Preservative	10	V O				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will no
RM NO 01-01 (res 14-0	(197)	Relingui	shad By: Terrop	share 10	ate/Time /28/24 &/24	17		ived By:	PAG	Date/Time	All samples submitted are subject to All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.
age 109 of 128		thonu	se	100		18;	Menthon	to De	en	18-238 4842	Nor

		_								_		Ser	rial_No:11132411:18	
Дерна	CHAIN OF	CUS	STO	DY PA	ge 2	OF 4	Date F	ec'd in L	ab:	0/291	24	ALPHA	JOD #: L2462	828
ESTBORO, MA	MANSFIELD, MA	Project	Informati	on			Repo	rt Inforn	nation - I	Data Deliv	erables	the second s	Information	
L 508-898-9220 X 508-898-9193	TEL 508-822-9300 FAX 508-822-3288	Project N	ame: PE	SEM	-Bt	H	D FA		#EM	AIL		C Same	as Client info PO #:	
ient Informatio	the second se		ocation: 3				ARAD	Ех	D Add	I Deliverab	les			
ent: Torrant	nase Engineering Inc.	Project #:	PD4	4.001	bD6	-1	Regul	tory Re	8	nts/Repor	t Limits			
tress: 100 (Canal Pointe Blud.	Project M	lanager:	JICK S	icala		State /	ed Progr	am	CI	iteria			
Sut	e NO, Princeton, NJ	ALPHA C							-					
one: 609 2	236 8171 ext 92	Turn-A	round Tin	ne			-			_				
1		Standa	rd P	PUCH			1		-					
all nick.	scala@terraphase.	Date Du		RUSH (only a	Time:	HTP-GANGA	50	100	2/	11	11	11		
	we been previously analyzed by Alpha				THINK .	_	'YSI	(5240)	3	11	11	111	SAMPLE HAND	LING
	Specific Requirements/Comm						ANALYSIS	.1~		[]]	11	//	Done	_
Please	e send EDDs to j	EDDC	terrap	hase .	com		Benzana	Toluent	11	11	11	111	Lab to do Preservation	
							les les	olla	/ /	///	11	///	Lab to do	
LPHA Lab ID ab Use Only)	Sample ID		Colle Date	ction Time	Sample Matrix	Sampler's Initials	17	71			11	//	(Please specify below)	nents
2828-11	136N- SB22-4.	0-4.5	10/28/2	1210	so	MMM	XX	5						
12	136N-5B23-1:	5-2.0	1	1220	1	1	X	(
13	136N - 5B23 - 3.	0-3.5		1225			X	5						
14	136N - 5824 -1.			1235			XX	(
15	136N - 5B24 - 4		51	1240			-	4						
16	136N - 5B24-4			1242			1.1	(
17	1361V - 5825-1			1255	1			S	1					
18	130N - SB25 -			1300			XY	6						
19	136 N-SB25-			1305			XX	(
20				1400	V	1	HI	4					/	(
~	14 0000 ·			Г	Con	tainer Type	VI	/					Please print clearly, legib	
			_		Р	reservative	0	0					pletely. Samples can no in and turnaround time c	t be logge
		Relingu	ished By:		Da	ite/Time			eived By:		1	te/Time	start until any ambiguitie	s are resol
	0	1	100	-						1.00	1 41 4	1.	All samples submitted at	
	A	691	le	Terrap		0128/2	4 17	462	-4	PAC	10/28	3/24/17	CAlpha's Terms and Cond See reverse side.	

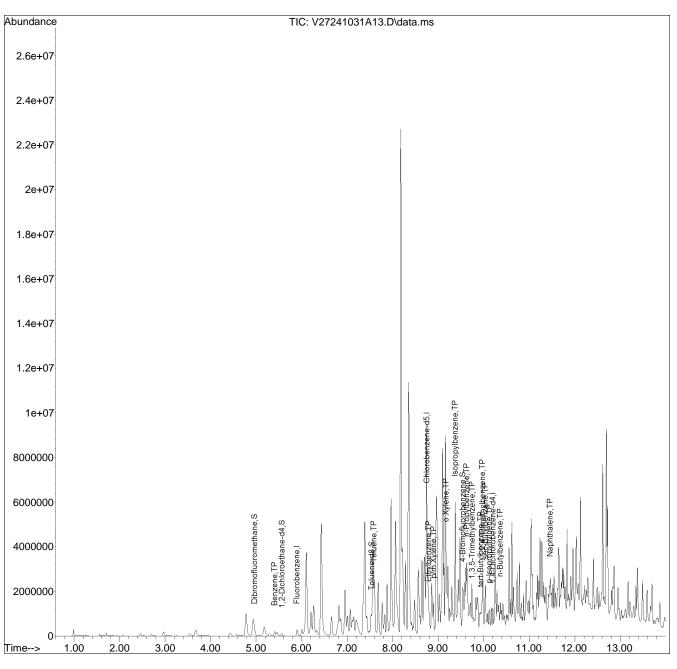

	and the second sec						_							Se	erial_No:11132411:18
ALPHA	CHAIN OF	cus	TOD	DY PA	3E 3	OF 4	Dat	e Rec'd in	Lab:	0/2	912	4		ALPH	A JOB #: 12462828
WESTBORD, MA	MANSFIELD, MA	Project In	formati	on.			Re	port Info	rmatio	n - Data	a Deliv	erable	es	Billin	g Information
TEL 508-898-9220 FAX: 508-898-9193	TEL 508-822-9300 FAX: 508-822-3288	Project Nam	ie: PE	SRM-	BOH	1	Q	FAX	X	EMAIL				🗆 Sam	e as Client info PO #:
Client Informatio	n F	Project Loca	ation: 3/	44 W Phile	Passu	ink		ADEx		Add'l De		-	1		
Client: Terra	obase Enquieering Int	project #:	PAUL	Phile 001-00	PA			ulatory R		ments/			its		
	anol Pointe Blud F	Project Man	ager:	Vick .	Scale		Stat	e /Fed Pro	gram		CI	iteria	-	_	
	110, Princeton, NJ 1	ALPHA Que	ote #:					-					-		Constanting of the local diversion of the loc
Phone: 609 2	36 8/71 ext. 92	Turn-Aro	und Tin	10											
Fax:		Standard	0	RUSH (only o	utened it we a	(Revota					_	_	_	_	
Email: Nick. S	cala Oterraphose, com	Date Due:			Time:			000	0	11	1	1	11	1	SAMPLE HANDLING
These samples have	ve been previously analyzed by Alpha		atten ti			_	1	.8240	260	11	/	11	/	11	Filtration
	pecific Requirements/Comme						ANAL	1.10	1 /	1	/ /	1		11	Done
Send	EDDs + EDDQ ferr	apha.	se.co	m				Folvene.		11	1	1	11		Lab to do Preservation
			10.10			1		1000	/	11	/	11	1	//	Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		Date	ction Time	Sample Matrix	Sampler's Initials	10	16/	//				1		Sample Specific Comments
62828-21	130N-SB33-4.0.	4.5 10/	28/24	1405	50	MMM	4	H							
22	inde		1	1427	1		H	H							
23	136N - 51329 - 3.0	-3.5		1430			H	4							
24	136N -SB31-1.0-	I.S		1450			H	H							
25	136N - 5B31-2.5	-3.0	12	1455			H	H							
26	136 N -SB32-	1.9		1505			H	H							
21	136N -3B32-23	5-3.0	ng	1509			H	H							
28	136N -5830 - 10			1515			H	14							
29	136N - SB30 - 2.0	-2.5		1520	1		H	H							
30	136N - 5828-1.5	-2.0	1	1525	J	1	H	H							
				Γ	Cont	ainer Type	V	V		1		-			Please print clearly, legibly and c
					P	reservative	Ø	ß	1.0	1.1					pletely. Samples can not be logg in and turnaround time clock will
	14	Relinquish			-	te/Time			eceived	By	0.		Date/	1.0	start until any ambiguities are res
Sec. Sec.	All	- Ca	Ten	ophese	10/5	B/24 18	182	24	D.	1	1.764	10	128/	18:4	Alpha's Terms and Conditions
age 111 of 128	C-	R	-0		10/n	24 23	0	Anthe	mp	green	2 001	28	2024	2127	

0510 12/52/01

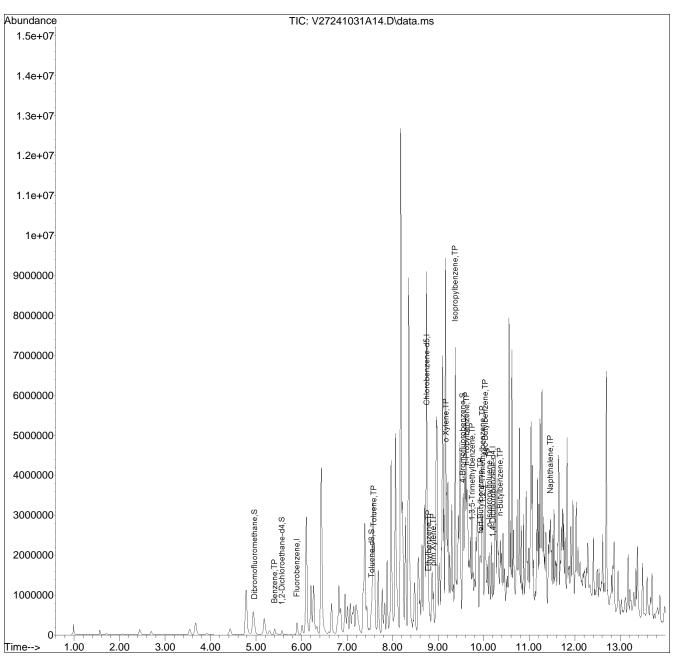
							-			_		S	erial_No:11132411:18	
ALPHA	CHAIN O	FCU	STO	DY PA	IGE 4	OF 4	Date Rec	d in Lab:	10/2	29/2	4	ALPI	HA JOB #: L246282	8
WESTBORO, MA	MANSFIELD, MA	Project	Informati	ion		-	Report I	nformati	on - Data	Deliver	ables	of the local division in which the local division in which the local division is not the local division of the	ng Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	lame:PES	RM-B	DIN		G FAX)	EMAIL	-		🗆 San	ne as Client info PO #:	
Client Informatio	n	Project L	ocation: 3/	44 W.	Passyu	nK	ADEx		Add'l De					
Client: Terrapi	hase Engineering In	Project #	P044.	noi noi	G. PA		Regulato		rements/		Peter			
ddress: 100 Co.	nal Pointe Blud	Project N	lanager:	Nick	Scale		State /Fed	Program		Crite	ria			
	Princeton, NJ	ALPHA			s conc		-	-		-				
	236 8171 ext. 92	Turn-A	round Tin	ne										
ax:		Standa	and D	RUSH (only a			_							
Email: Nick. S	cala @terraphase.co	Date Du	ie:		Time:	myonia)	0	10	11		11	11	11 Innorman	
I These samples hav	e been previously analyzed by Alpha	1			(mus,	_	1SY	8260	11	11		11	SAMPLE HANDLING	
	pecific Requirements/Con						ANALYSIS		11	11	11	11	/ Done	
send	EDDs to ED	D @te.	rapha	se.com	2		Benzene	-Jusie	11		11	11	Lab to do	
		A			_	_	12	2/ /	11	11	11		Preservation	
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	Time	Sample Matrix	Sampler's Initials	Be	1			11	11	(Please specify below) Sample Specific Comments	-
02828-31	136N - SB28-	2.5-3.0	10/28/2	41530	So	MMM	MM							
32	136N - SB 34	- 1.0-1.5	51	1545		1	HH							
33	136 N - SB 34 -			1550		1	HH							
34	136N - 5836-			ISSS			HH							
35	136 N - 5B 36			1600			HH							T
36	136 N - SB35 -			1605			HH							
31	136 N-5835			1610	1		HH							
30	FB- 241028			1620	NQ		XX							
39	TB- 24/02			1625		1	XX		2					
	10 -100	-	-				1 1							+
			_	Ē	Cont	ainer Type	1.1.1		-	-		++		-
						reservative	V V 0 0		-				Please print clearly, legibly and pletely Samples can not be log	gged
		Relinqu	ished By:	100	Da	le/Time	0.0	Receive	d By:		Dat	e/Time	in and turnaround time clock wi start until any ambiguities are re	esolv
	A	PL	1	Terrapi	hace h	0/28/24	1746	12	111	ACT	10/28	per 1	74 All samples submitted are subjected Alpha's Terms and Conditions.	ect to
ORM NO: 01-01 (rev. 14-0) Page 112 of 128	CT-07)	pet	and	e	0/2	8/24	17:19	thony	En la	D 001	28 20	8 20	See reverse side.	icha
0	An	thony	Green	R	joks	121 2354		3	S	0 001	012512	1232	2x	115


10/24/24 0130

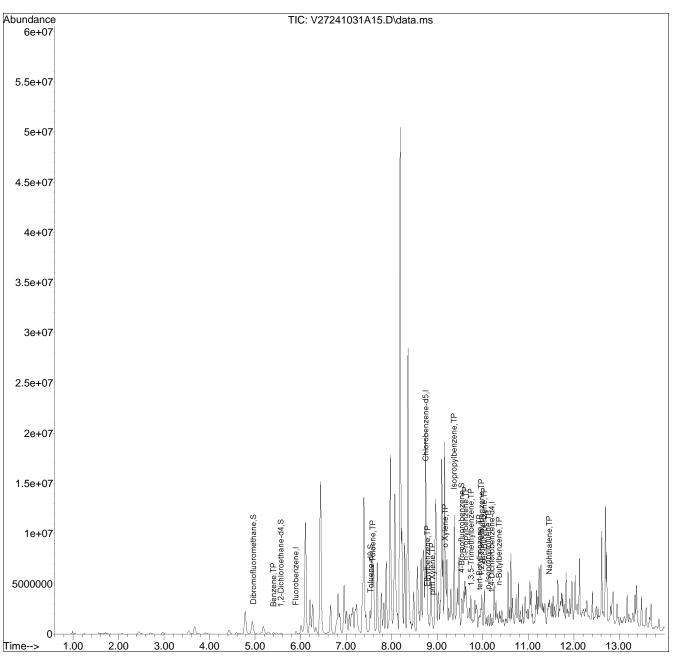
Data Path : K:\VOA127\2024\241030B\ Data File : V27241030B09.D Acq On : 30 Oct 2024 03:05 pm Operator : VOA127:JIC Sample : L2462828-06,31,4.05,5,,C,32.70,37.00,0.25 Misc : WG1991545, ICAL21556 ALS Vial : 9 Sample Multiplier: 1 Quant Time: Oct 31 08:49:26 2024 Quant Method : K:\VOA127\2024\241030B\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration : 8260-BTEX - Standard BTEX List241030B01.D. Sub List


V127_241001N_8260.m Thu Oct 31 13:34:06 2024

Data Path : K:\VOA127\2024\241030B\ Data File : V27241030B12.D Acq On : 30 Oct 2024 04:07 pm Operator : VOA127:JIC Sample : L2462828-09,31,5.76,5,,C,32.62,38.63,0.25 Misc : WG1991545, ICAL21556 ALS Vial : 12 Sample Multiplier: 1 Quant Time: Oct 31 08:50:04 2024 Quant Method : K:\VOA127\2024\241030B\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-BTEX - Standard BTEX List241030B01.D.


V127_241001N_8260.m Thu Oct 31 13:34:20 2024

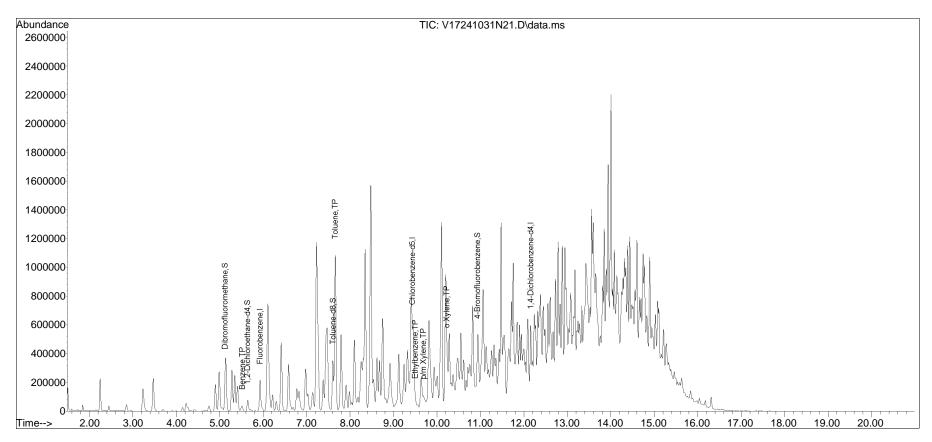
Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A13.D Acq On : 31 Oct 2024 11:48 am Operator : VOA127:LAC : L2462828-12,31H,2.90,5,0.100,,A,30.37,33.77,0 Sample WG1991922, ICAL21556 Misc : ALS Vial : 13 Sample Multiplier: 1 Quant Time: Oct 31 17:51:34 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-NYCP51 - NYCP5141031A\V27241031A01.D•


V127_241001N_8260.m Fri Nov 01 10:36:54 2024

Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A14.D Acq On : 31 Oct 2024 12:09 pm Operator : VOA127:LAC Sample : L2462828-13,31H,3.66,5,0.100,,A,30.52,34.68,0 WG1991922, ICAL21556 Misc : ALS Vial : 14 Sample Multiplier: 1 Quant Time: Oct 31 17:52:13 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-NYCP51 - NYCP5141031A\V27241031A01.D•

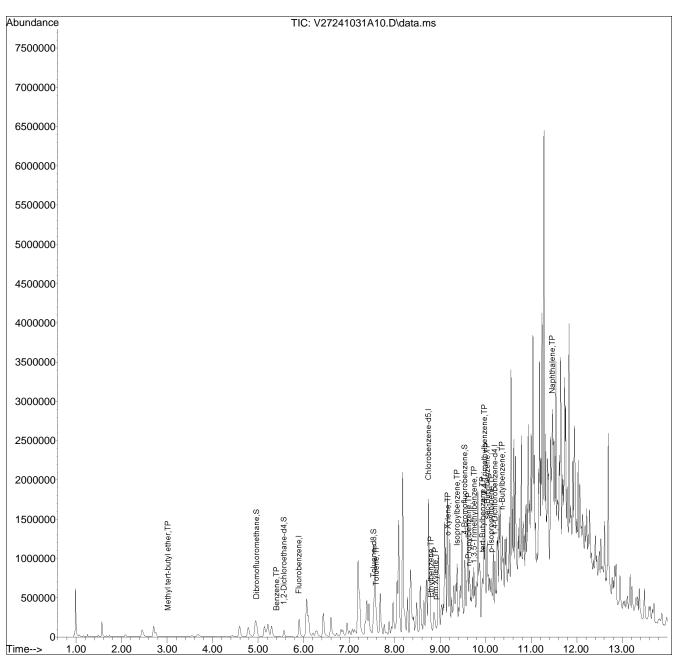
V127_241001N_8260.m Fri Nov 01 10:37:01 2024

Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A15.D Acq On : 31 Oct 2024 12:29 pm Operator : VOA127:LAC Sample : L2462828-14,31H,3.57,5,0.100,,A,30.38,34.45,0 Misc : WG1991922, ICAL21556 ALS Vial : 15 Sample Multiplier: 1 Quant Time: Oct 31 17:52:55 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-NYCP51 - NYCP5141031A\V27241031A01.D•

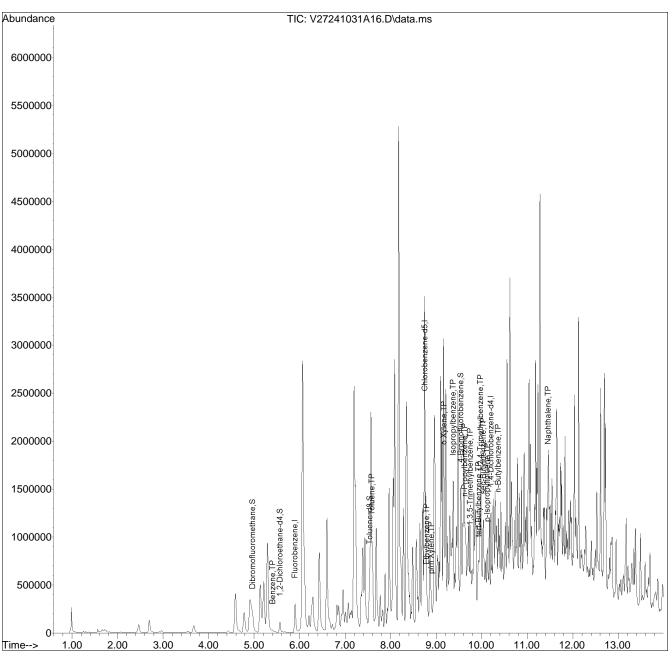


V127_241001N_8260.m Fri Nov 01 10:37:08 2024

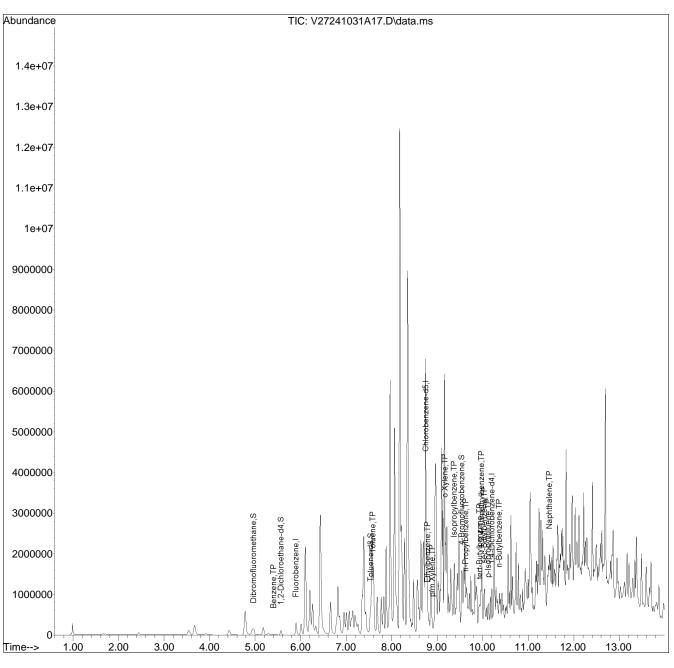
Data Path : K:\VOA117\2024\241031N\ Data File : V17241031N21.D Acq On : 01 Nov 2024 04:37 am Operator : voa117:JIC Sample : L2462828-15,31,5.12,5,,B,32.44,37.81,0.25 Misc : WG1991938,ICAL21482 ALS Vial : 21 Sample Multiplier: 1


Quant Time: Nov 01 08:29:33 2024 Quant Method : K:\VOA117\2024\241031N\V117_240910N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Sep 11 12:06:06 2024 Response via : Initial Calibration

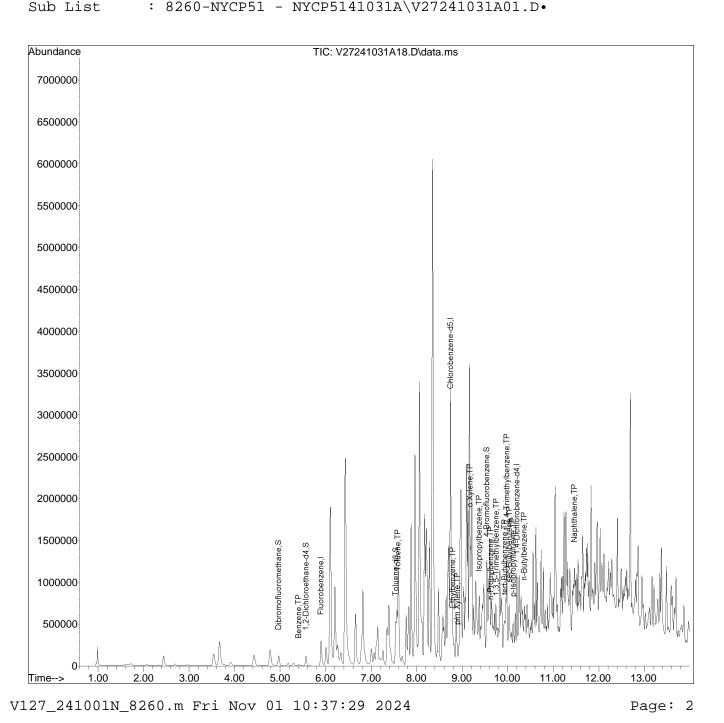
Sub List : 8260-BTEX - Standard BTEX List241031N01.D•


V117_240910N_8260.m Fri Nov 01 11:03:00 2024

Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A10.D Acq On : 31 Oct 2024 10:47 am Operator : VOA127:LAC : L2462828-16,31,2.80,5,,C,32.71,36.01,0.50 Sample WG1991921,ICAL21556 Misc : ALS Vial : 10 Sample Multiplier: 1 Quant Time: Oct 31 17:47:40 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-NYCP51 - NYCP5141031A\V27241031A01.D•

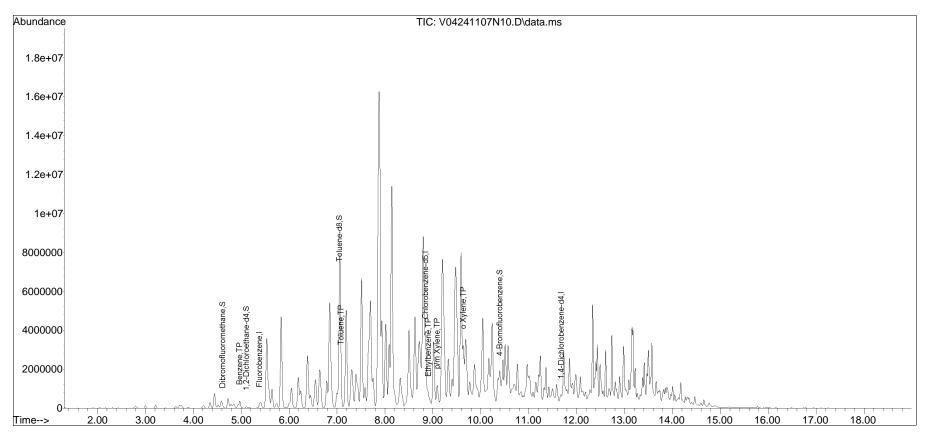

V127_241001N_8260.m Fri Nov 01 10:36:47 2024

Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A16.D Acq On : 31 Oct 2024 12:50 pm Operator : VOA127:LAC : L2462828-17,31H,4.92,5,0.100,,A,30.30,35.72,0 Sample WG1991922, ICAL21556 Misc : ALS Vial : 16 Sample Multiplier: 1 Quant Time: Oct 31 17:53:38 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration : 8260-NYCP51 - NYCP5141031A\V27241031A01.D• Sub List


V127_241001N_8260.m Fri Nov 01 10:37:15 2024

Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A17.D Acq On : 31 Oct 2024 01:10 pm Operator : VOA127:LAC Sample : L2462828-18,31H,4.92,5,0.100,,A,30.60,36.02,0 WG1991922, ICAL21556 Misc : ALS Vial : 17 Sample Multiplier: 1 Quant Time: Oct 31 17:54:24 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration Sub List : 8260-NYCP51 - NYCP5141031A\V27241031A01.D•

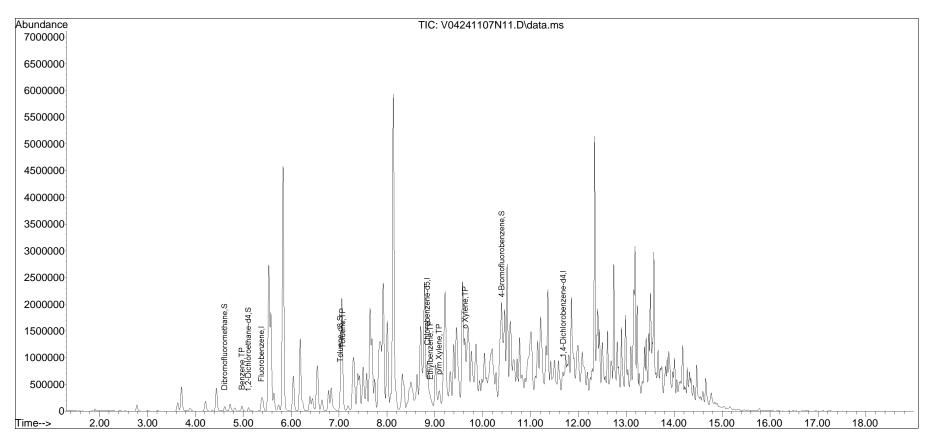
V127_241001N_8260.m Fri Nov 01 10:37:22 2024


Data Path : K:\VOA127\2024\241031A\ Data File : V27241031A18.D Acq On : 31 Oct 2024 01:31 pm Operator : VOA127:LAC Sample : L2462828-19,31H,4.89,5,0.100,,A,30.30,35.69,0 WG1991922, ICAL21556 Misc : ALS Vial : 18 Sample Multiplier: 1 Quant Time: Oct 31 17:54:56 2024 Quant Method : K:\VOA127\2024\241031A\V127_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:48:39 2024 Response via : Initial Calibration

Data Path : K:\VOA104\2024\241107P\ Data File : V04241107N10.D Acq On : 7 Nov 2024 8:20 pm Operator : VOA104:JIC Sample : L2462828-23,31H,3.16,5,0.100,,A,30.33,33.99,0 Misc : WG1994924,ICAL21630 ALS Vial : 10 Sample Multiplier: 1

Quant Time: Nov 08 08:13:13 2024 Quant Method : K:\VOA104\2024\241107P\V104_241024B_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 25 15:02:47 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241107N02.D•

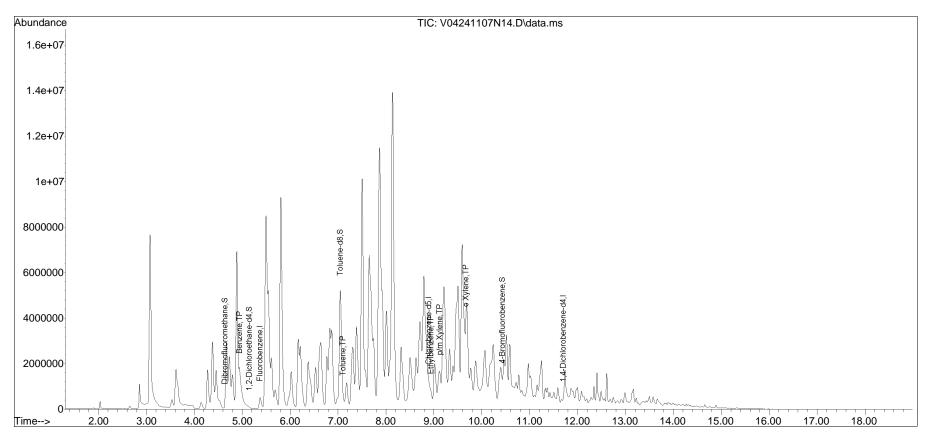


V104_241024B_8260.m Fri Nov 08 11:38:58 2024

Data Path : K:\VOA104\2024\241107P\ Data File : V04241107N11.D Acq On : 7 Nov 2024 8:46 pm Operator : VOA104:JIC Sample : L2462828-25,31H,4.37,5,0.100,,A,30.24,35.11,0 Misc : WG1994924,ICAL21630 ALS Vial : 11 Sample Multiplier: 1

Quant Time: Nov 08 08:13:18 2024 Quant Method : K:\VOA104\2024\241107P\V104_241024B_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 25 15:02:47 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241107N02.D•

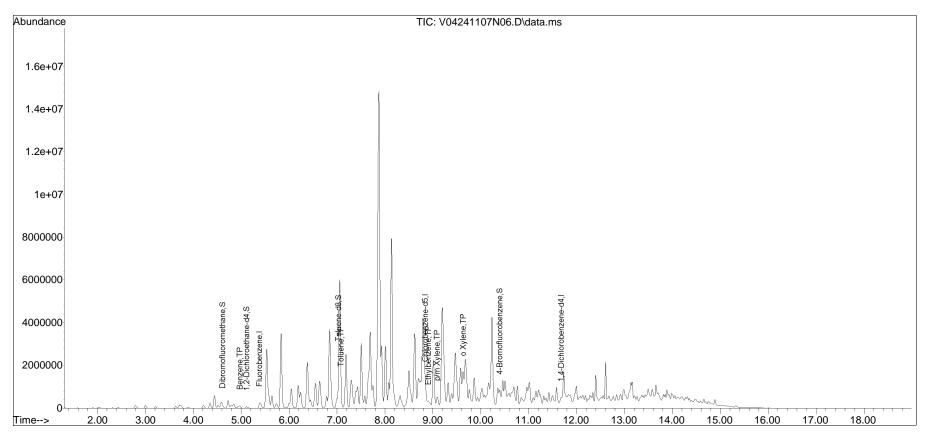


V104_241024B_8260.m Fri Nov 08 11:39:03 2024

Data Path : K:\VOA104\2024\241107P\ Data File : V04241107N14.D Acq On : 7 Nov 2024 10:05 pm Operator : VOA104:JIC Sample : L2462828-26,31,2.22,5,,B,30.30,32.77,0.25 Misc : WG1994998,ICAL21630 ALS Vial : 14 Sample Multiplier: 1

Quant Time: Nov 08 14:08:09 2024 Quant Method : K:\VOA104\2024\241107P\V104_241024B_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 25 15:02:47 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241107N02.D•

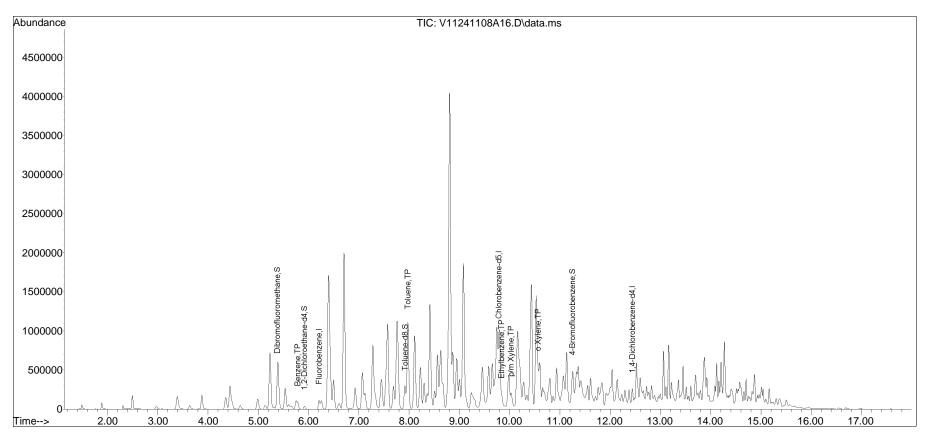


V104_241024B_8260.m Fri Nov 08 14:11:00 2024

Data Path : K:\VOA104\2024\241107P\ Data File : V04241107N06.D Acq On : 7 Nov 2024 6:35 pm Operator : VOA104:JIC Sample : 12462828-29,31h,2.69,5,0.100,,a,30.35,33.54,0 Misc : WG1994924,ICAL21630 ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 08 08:12:56 2024 Quant Method : K:\VOA104\2024\241107P\V104_241024B_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Fri Oct 25 15:02:47 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241107N02.D•

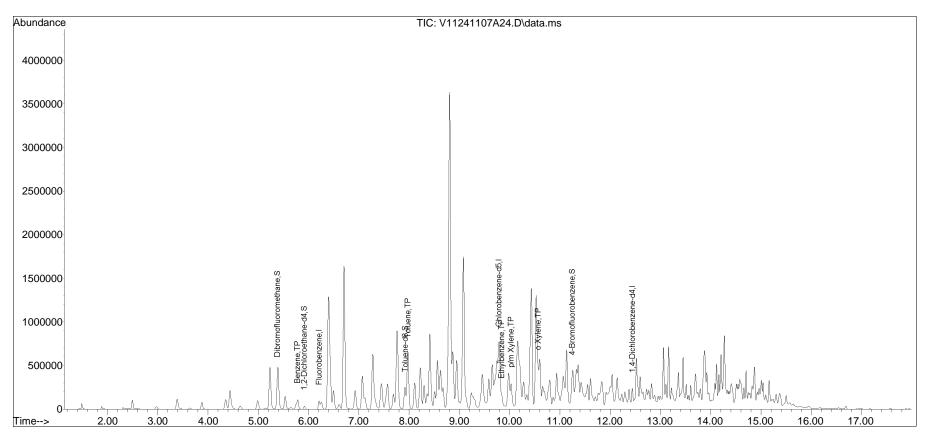


V104_241024B_8260.m Fri Nov 08 11:38:38 2024

Data Path : K:\VOA111\2024\241108A\ Data File : V11241108A16.D Acq On : 08 Nov 2024 02:27 pm Operator : VOA111:JIC Sample : 12462828-36,31h,2.95,5,0.100,,a,30.24,33.69,0 Misc : WG1995023,ICAL21553 ALS Vial : 16 Sample Multiplier: 1

Quant Time: Nov 08 15:10:48 2024 Quant Method : K:\VOA111\2024\241108A\V111_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:11:55 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241108A01.D•



V111_241001N_8260.m Fri Nov 08 15:20:34 2024

Data Path : K:\VOA111\2024\241107A\ Data File : V11241107A24.D Acq On : 07 Nov 2024 06:03 pm Operator : VOA111:JIC Sample : 12462828-37,31h,5.02,5,0.100,,a,30.26,35.78,0 Misc : WG1994855,ICAL21553 ALS Vial : 24 Sample Multiplier: 1

Quant Time: Nov 08 07:41:59 2024 Quant Method : K:\VOA111\2024\241107A\V111_241001N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Oct 02 10:11:55 2024 Response via : Initial Calibration

Sub List : 8260-BTEX - Standard BTEX List241107A01.D•

V111_241001N_8260.m Fri Nov 08 09:41:52 2024

Appendix E

Data Quality Assurance and Control Checks

Table E-1

Summary of QAQC Analytical Results

136 Naphtha Release Area

Bellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID Sample Date Comments	QAQC FB-240523 5/23/2024 Field Blank	QAQC TB-240523 5/23/2024 Trip Blank	QAQC FB-240524 5/24/2024 Field Blank	QAQC TB-240524 5/24/2024 Trip Blank	QAQC FB-241028 10/28/2024 Field Blank	QAQC TB-241028 10/28/2024 Trip Blank
Volatile Organic Compounds (mg/kg)	NA	NA	NA	NA	NA	ND
Volatile Organic Compounds (ug/L)	ND	ND	ND	ND	ND	NA
Semivolatile Organic Compounds (ug/L)	ND	NA	ND	NA	NA	NA

Notes:

1 All concentrations reported in ug/L (ppb) or mg/kg (ppm); detection limits in parentheses.

2 Only compounds with at least one detection are shown.

Abbreviations:

ND - Not Detected

NA - Not Analyzed

Table E-2 Quality Control Methodology

Bellwether District Holdings, LLC

Multiple VOC Runs Data Quality	Solution
If the surrogate recoveries for one run are within	The run with surrogate recoveries within acceptance
acceptance criteria and the other run has 3-4	criteria is selected as reportable.
surrogates outside of acceptance criteria:	
If the surrogate recoveries for one run are within	The run with surrogate recoveries within acceptance
acceptance criteria and has some detections and the	criteria is selected as reportable.
other run has 1-2 surrogates outside of acceptance	·
criteria:	
If one run has surrogate recoveries within acceptance	The run with detections is selected as reportable and the
critera but is non-detect and the other run has 1-2	run with non-detects is not reported.
surrogates outside of acceptance criteria but has	
detections:	
If both runs have detections and surrogate recoveries	The run with more surrogates recoveries outside
outside of acceptance criteria:	acceptance criteria is not reported and the run with fewer
	surrogate recoveries outside of acceptance criteria is
	selected as reportable.
If one run has surrogate recoveries outside of	The run with detections is selected as reportable and the
acceptance critera but is non-detect and the other run	run with non-detects is not reported.
has 1-2 more surrogates outside of acceptance criteria	
but has detections :	
If both runs have the same number of surrogates with	If both results are detected, the higher of detections is
recovery outside the acceptance criteria:	selected as reportable; if one result is detected and one is
	non-detect, the detection is selected as reportable; if
	both results are non-detect, the lower reporting limit is
	selected as reportable.
If two VOC runs are reported and there are no QC issues	If both results are detected, the higher of detections is
for both runs:	selected as reportable; if one result is detected and one is
	non-detect, the detection is selected as reportable; if
	both results are non-detect, the lower reporting limit is
	selected as reportable.
	1

Table E-3 Quality Control Checklist

Bellwether District Holdings, LLC, Philadelphia, PA

		1	Keyfile-Relate	d						EDD-Related	I					
		Check Lab	Check	COC/Field Notes	Check	Check	Review EDD	Dates,		Surragata	Multipl Data	e Results Reasonable			Check for Concerning	
Date Sampled	SDG	Login	Keyfile		Sample IDs	-	for Issues	Sample	Reported	Surrogate Recovery	Qualifiers	Limits	Other	Resolved	Qualifiers	
																L2428914-12 (136N-SB02-3.0-3.5): VOCs reported for and the surrogate recovery for toluene-d8 (131%) and interferences. A copy of the chromatogram is included all associated compounds are considered to have a po reported. The run with surrogate recoveries within acc is not reportable. L2428914-16 (FB-240523): SVOCs reported for two run outside the acceptance criteria for individual target co holding time. The results of both extractions are report naphthalene (31%/31%). The reextracted run is report
5/23/2024	L2428914	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
5/24/2024	L2429024	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		L2429024-08 (FB-240524): SVOCs reported for two rur outside the acceptance criteria for naphthalene (31%/ time. The results of both extractions are reported. The
10/28/2024	L2462828	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes	Yes		L2462828-26 (136N-SB32-0.5-1.0): VOCs reported for t dichlorobenzened4 (15%) and the surrogate recoverie acceptance criteria due to obvious interferences. The L2462828-39 (TB-241028): VOCs reported for two runs

Comments

or two runs. The internal standard (IS) response(s) for 1,4-dichlorobenzene-d4 (24%) and 4-bromofluorobenzene (624%) were outside the acceptance criteria due to obvious ded as an attachment to this report. Since the IS response was below method criteria, potentially highbias. A high-level analysis was performed, and those results are also acceptance criteria is selected as reportable. The high run is reported and the low run

runs. The WG1927316-2/-3 LCS/LCSD recoveries, associated with L2428914-16, were compounds; however, the criteria were achieved upon re-extraction outside of ported; however, all results are considered to have a potentially low bias for orted and the first extraction run is not reportable.

runs. The WG1927316-2/-3 LCS/LCSD recoveries, associated with L2429024-08, were %/31%); however, the criteria was achieved upon re-extraction outside of holding Fhe reextracted run is reported and the first extraction run is not reportable.

for two runs. The IS response(s) for chlorobenzene-d5 (32%), and 1,4eries for toluene-d8 (371%) and 4-bromofluorobenzene (377%) were outside the he high run is reported and the low run is not reportable. runs. The low run is reported and the high run is not reportable.

Appendix F

Soil Boring Logs

Project Number: P044.001.006 Date(s) Drilled 5/23/24 Logged By K. O'Rourke Checked By A. Strohl Drilling Method Direct Push Total Depth of Borehole **5 feet bgs** Drill Bit 2" x 5' macrocore Size/Type Drill Rig Trino 7822 DT Geoprobe Drilling Contractor MB Drilling Elevation NA Туре Sampling Groundwater Level 1.5 feet bgs Grab Temporary Well NA Method(s) Borehole Backfill Soil Cuttings Location 2679948.58304 E, 219506.253254 N

							
Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0-			SM		SILTY SAND, tan brown, poorly graded, roots, damp, dense	0	
			ML		SILT, grey tan, dense, low dilatancy and plasticity, wet	0.2	Sample 136N-SB01-1.0-1.5 and
						7.5	136N-SB01-1.0-1.5D from
			SP		SAND, grey, poorly graded, wet, dense, fine grained	0.6	1.0-1.5' bgs
2	46/60		ML		SILT, grey tan, dense, low dilatancy or plasticity, wet	0.2	
						1.4	
						5.3	
011 1 60 4					T	5.9	
					▼increase in silt content	3.1	
						7.4	
					End of boring		
6							
מוזפופמ							
8							
-210							
10							
5 10 —					-		
			L			L	۱
ا							

V: Projects P044 - PESRM/PES/Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]

oate(s) Orilled Orilling							/ K. O'Rourke		Checked By					
1ethod	Direct I					Size/Type	2" x 5' macrocore		Total Depth of Borehole	0 feet	bgs			
ype	7822 D	T Geo	oprobe			Drilling Contractor	MB Drilling		Elevation NA	A				
	vater Lev			gs		Sampling Method(s)	Grab		Temporary Well NA					
orehole ackfill	³ Soil C	utting	gs			Location	2679948.58304 E, 2194	96.125802 N						
, Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION					REMARKS AND OTHE TESTS			
0-			SP		SAND, ta	an brown,	poorly graded, roots, da	mp		0.0				
								_		0.0				
			SP		SAND, ta	an, poorly	graded, damp, loose			0.4				
2—					_				_	0.2				
-	38/60									0.1				
			C14				<u> </u>			7.8	Sample			
		Ш	SM				k, fine grained, dense, p			8.9	136N-SB02-3.0-3.5 from 3.0-3.5' bgs			
4—					_petroleur	n-like odoi		and dilatan	uy, —	13.1				
					saturatio	n/concrete	and brick fragments			8.2 7.4				
					↓ brick frag	ments				3.3				
										3.0				
6—					_				_	7.7				
					_					1.6				
	40/60				∳ black col	or, petrole	um-like odor from 7.0-10	0.0' bgs		2.3				
8—	. 3, 30				_				_	7.8				
-			SP							1.6				
			54		SAND, p	ooriy grad	ed, wet, black, loose			1.7				
										4.3				
10 —					End of bo	oring				6.9				
						Jung								

Date(s) 5/23/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA
Groundwater Level 4.5 feet bgs	Sampling Method(s) Grab	Temporary Well NA
Borehole Backfill	Location 2679943.81718 E, 219486.594083 N	

Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
2-	46/60		SW		SAND, brown, damp, loose, roots from 0.0-0.5' bgs, gravel, some fines	0.6 0.4 0.0 1.4 5.1	
			ML		SILT, tan brown, hard, low plasticity and dilatancy, dense, black staining	1.7 0.2 0.0 0.0 0.0	Sample 136N-SB03-3.0-3.5 from 3.0-3.5' bgs
6-					End of boring		
8							

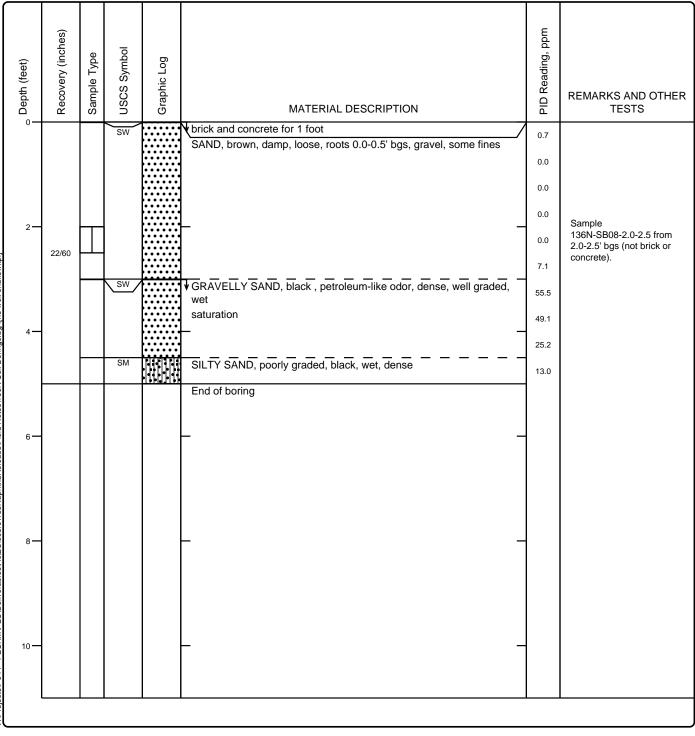
Date(s) 5/23/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl		
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs		
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA		
Groundwater Level 4.0 feet bgs	Sampling Method(s) Grab	Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679950.6681 E, 219487.487682 N			

, Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0 2	24/60		SW SP ML		SAND, brown, damp, loose, roots from 0.0-0.5' bgs, gravel, some fines SAND, black, loose, dry, poorly graded ▼SILT, tan brown, hard, dense, low plasticity and dilatancy, damp brick fragments with staining immediately below, petroleum-like smell	0 0 0 1.8 0	
4 6 8					▼saturation -	0	Sample 136N-SB04-3.5-4.0 from 3.5-4.0' bgs
6 —							
10							

Date(s) Drilled 5/23/24	Logged By K. O'Rourke	Checked By A. Strohl
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA
	Sampling Method(s) Grab	Temporary Well NA
Borehole Backfill Soil Cuttings	Location 2679944.29811 E, 219471.916916 N	

, Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Readind, ppm	REMARKS AND OTHER TESTS
0— 2—	40/60		SW		SAND, brown, damp, loose, roots from 0.0-0.5' bgs, gravel, some fines ✓ SILT, grey and black, wet, staining, petroleum-like odor, low plasticity and dilatancy saturation	0 0 0 1.3 4.6 16.0	Sample 136N-SB05-2.0-2.5 from 2.0-2.5' bgs
4 —					Black sand layer for 1-inch, petroleum-like odor, silt below firmer End of boring	27.2 38.0 22.4	6
6—					_		
8—						-	
10 —					_		

Date(s) Drilled 5/23/24	Logged By K. O'Rourke	Checked By A. Strohl
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA
	Sampling Method(s) Grab	Temporary Well NA
Borehole Backfill Soil Cuttings	Location 2679953.84374 E, 219455.66641 N	


, Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0	30/60		SW		SAND, brown, damp, loose, roots from 0.0-0.5' bgs, gravel, some fines → SILTY SAND, black, poorly graded, petroleum-like odor, wet saturation	0 0 0 9.8 7.4 237.6 23.4 4.9	Sample 136N-SB06-2.0-2.5 from 2.0-2.5' bgs
6 — 8 —					End of boring	9.0	
10—						-	

Projec	ct Num	ber:	P044	.001.00	06					
Date(s) Drilled 5/23/24						Logged By K. O'Rourke		Checked By	A. Stro	hl
Drilling Method	Drilling Direct Buch					Drill Bit Size/Type 2" x 5' macrocore		Total Depth of Borehole	Total Depth of Borehole 5 feet bgs	
Drill Rig Type	7822 D	T Ge	oprobe			Drilling Contractor MB Drilling		Elevation NA	۱.	
Groundv	water Lev	el 3.0) feet bo	js		Sampling Method(s) Grab		Temporary W	ell NA	
Borehole Backfill	^e Soil C	uttin	gs			Location 2679951.05693 E, 2194	49.859984 N			
o Depth (feet)	Recovery (inches)	Sample Type	M USCS Symbol	Graphic Log	SAND, b	MATERIAL DESCRIP		ned)	 PID Reading, ppm 	REMARKS AND OTHER TESTS
2—	25/60		SW		SAND, b damp v saturatio	rown, coarse grained, gravel, well n	graded, little to	no fines,	0 0.1 0.3 0.3 0.5 2.8	Sample 136N-SB07-2.5-3.0 from 2.5-3.0' bgs
4—			SM ML		petroleur SILTY S SILT, sol	me sand, low dilatancy and plastic m-like odor, wet AND, poorly graded, brown, loose, me sand, low dilatancy and plastic m-like odor, wet	wet		400.4 21.4 8.7	
6—					End of b	oring		_		

8-

10 -

Date(s) Drilled 5/23/24	Logged By K. O'Rourke	Checked By A. Strohl
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA
Groundwater Level 3.0 feet bgs	Sampling Method(s) Grab	Temporary Well NA
Borehole Backfill Soil Cuttings	Location 2679954.70247 E, 219437.37157 N	

Date(s) Drilled 5/23/24	Logged By K. O'Rourke	Checked By A. Strohl		
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs		
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA		
Groundwater Level 3.5 feet bgs	Sampling Method(s) Grab	Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679953.94463 E, 219420.467782 N			

	Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
ings.bg4[no well shallow.tpl]	0	36/60		SW		SAND, well graded, roots near surface, some fines, tan brown, dense ↓ SILTY SAND, dark brown, wet, petroleum-like odor, stained, dense ↓ saturation ↓ wood	 6.4 0.7 0.9 1.4 2.9 17.4 48.9 19.3 31.4 	Sample 136N-SB09-3.0-3.5 from 3.0-3.5' bgs
V:Projects/P044 - PESRM/PES/Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]	6—			SP		SAND, some fines, pooly graded, dark brown, stained, petroleum-like smell, wet End of boring	30.6	
V:\Projects\P044 - PESF	10 —							

Date(s) 5/23/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl	
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs	
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA	
Groundwater Level 2.5 feet bgs	Sampling Method(s) Grab	Temporary Well NA	
Borehole Backfill	Location 2679955.90216 E, 219401.976565 N		

Image: staturation Image: statur
--

V: Projects/P044 - PESRM/PES\Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]

Date(s) 5/24/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA
Groundwater Level 2.5 feet bgs	Sampling Method(s) Grab	Temporary Well NA
Borehole Backfill	Location 2679958.88903 E, 219402.370802 N	

Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0	26/60		SW		SAND, brown, damp, loose, roots from 0.0-0.5' bgs, gravel, some fines	0 0 0.1 0.0 0.5	Sample 136N-SB11-2.0-2.5 from 2.0-2.5' bgs
4 — 6 — 8 — 10 —			SM		SILTY SAND, black, wet, petroleum-like smell, loose	0.0 0.0 6.4 38.3 30.3	
6—					End of boring		
8—							
10							

Date(s) Drilled 5/24/24	Logged By K. O'Rourke	Checked By A. Strohl		
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs		
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA		
Groundwater Level 3.5 feet bgs	Sampling Method(s) Grab	Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679957.58846 E, 219393.202091 N			

Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0 - 2 -	15/60		SW		SAND, brown, very loose, well graded, roots from 0.0-0.5' bgs, gravel, some silt, low recovery due to softness/looseness	0 0 0 0 0 0 0	Sample 136N-SB12-3.0-3.5 from
N Soil Borings.bg4[no we	-				▼saturation	0 0 0	3.0-3.5' bgs
√aphthaRelease\Field Notes\136 9	-				End of boring		
ables/Act2Closure/136N 8						-	
V:/Projects/P044 - PESRM/PES/Deliverables/Act2Closure\136NaphthaRelease\Field Notes\136N Soil Borings.bg4[no well shallow.p0]	_						

³⁾ 5/24/24					Logged By K. O'Rourke	Checked By	Checked By A. Strohl		
	Push				Drill Bit Size/Type 2" x 5' macrocore	Total Depth , of Borehole	Total Depth of Borehole 3 feet bgs		
^{ig} 7822 D	T Ge	oprobe			Drilling Contractor MB Drilling	Elevation NA	Elevation NA		
dwater Lev	el 1.	5 feet bo	gs		Sampling Method(s) Grab	Temporary W	Temporary Well NA		
^{ole} Soil C	uttin	gs			Location 2679956.38009 E, 219385.933335 N				
					•				
Recovery (inches)	Sample Type	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION		PID Reading, ppm	REMARKS AND OTHER TESTS	
		SP		SAND, ta	an brown, poorly graded, damp, roots, dense		0.7		
26/36							0.6 36.8	Sample 136N-SB13-1.0-1.5 from 1.0-1.5' bgs	
						_	106.2	, , , , , , , , , , , , , , , , , , ,	
							297.2		
				<pre></pre>	[;] wood sand. black. wet		13.3		
				End of b	oring, hit refusal at 3.0' bgs twice				
_				_		-	-		
_				_		_			
	Image: style styl	a Direct Push ig 7822 DT Ge dwater Level 1.5 ole Soil Cuttin (sequence) edk 1 (sequence) 26/36 a 26/36 a 26/36 a	a Direct Push ig 7822 DT Geoprobe dwater Level 1.5 feet bg ole Soil Cuttings ig (isopage) ig Soil Cuttings ig isopage) ig Soil Cuttings ig isopage) ig isopa	Image: Solic contract of the second state of the second	ig Direct Push ig 7822 DT Geoprobe dwater Level 1.5 feet bgs ole Soil Cuttings ig ig ig Soil Cuttings ig ad, L ig ig ig Soil Cuttings ig ad, L ig <td>and Direct Push Drill Bit Size/Type 2" x 5' macrocore ig 7822 DT Geoprobe Drilling Contractor MB Drilling dwater Level 1.5 feet bgs Sampling Method(s) Grab ole Soil Cuttings Location 2679956.38009 E, 219385.933335 ig ig ig ig ig ig ig ig</td> <td>a Direct Push Drill Bit SizeType 2" x 5' macrocore Total Depth of Borehole ig 7822 DT Geoprobe Drilling Contractor Elevation N/ Method(s) dwater Level 1.5 feet bgs Sampling Method(s) Grab Temporary W ole Soil Cuttings Location 2679956.38009 E, 219385.933335 N Temporary W ole Soil Cuttings Location 2679956.38009 E, 219385.933335 N Matter Level 1.5 feet bgs add add add add add add add add add add add add add add add add add add add add add add add add add add add add add<</td> <td>a Direct Push Drill Bit Size/Type 2" x 5" macrocore Total Depth of Borehole 3 feet b ig 7822 DT Geoprobe Drilling Contractor MB Drilling Elevation NA dwater Level 1.5 feet bgs Sampling Method(s) Grab Temporary Well NA Ole Soll Cuttings Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Elevation NA Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilli</td>	and Direct Push Drill Bit Size/Type 2" x 5' macrocore ig 7822 DT Geoprobe Drilling Contractor MB Drilling dwater Level 1.5 feet bgs Sampling Method(s) Grab ole Soil Cuttings Location 2679956.38009 E, 219385.933335 ig ig ig ig ig ig ig ig	a Direct Push Drill Bit SizeType 2" x 5' macrocore Total Depth of Borehole ig 7822 DT Geoprobe Drilling Contractor Elevation N/ Method(s) dwater Level 1.5 feet bgs Sampling Method(s) Grab Temporary W ole Soil Cuttings Location 2679956.38009 E, 219385.933335 N Temporary W ole Soil Cuttings Location 2679956.38009 E, 219385.933335 N Matter Level 1.5 feet bgs add add add add add add add add add add add add add add add add add add add add add add add add add add add add add<	a Direct Push Drill Bit Size/Type 2" x 5" macrocore Total Depth of Borehole 3 feet b ig 7822 DT Geoprobe Drilling Contractor MB Drilling Elevation NA dwater Level 1.5 feet bgs Sampling Method(s) Grab Temporary Well NA Ole Soll Cuttings Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Elevation NA Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Location 2679956.38009 E, 219385.933335 N Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilling Image: Contractor MB Drilli	

10-

Date(s) Drilled 5/23/24	Logged By K. O'Rourke	Checked By A. Strohl		
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs		
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA		
Groundwater Level 3.0 feet bgs	Sampling Method(s) Grab	Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679960.05809 E, 219382.664004 N			

, Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
Ū			SW		SAND, brown, well graded, roots from 0.0-0.5' bgs, some silt, gravel, damp	0.2 1.1	
						0.4	
2—						0.3 0.1	
	26/60				saturation	0.6	Sample 136B-SB14-2.5-3.0 from 2.5-3.0' bgs
			SM		SILTY SAND, black, petroleum-like odor, poorly graded, wet	6.3 189.4	
4—						104.3	
6—				<u>. </u>	End of boring	52.4	
8—							
10							
	0- 2- 4- 6- 8-	0 2- 26/60 4- 6- 8-		0 SW 2- 26/60 SM 4- 6- 8- 8-	0 2 2 26/60 4 6 6 8 8	0 SW SAND, brown, well graded, roots from 0.0-0.5' bgs, some silt, gravel, damp 2 2660 SILTY SAND, black, petroleum-like odor, poorly graded, wet 4 SM SILTY SAND, black, petroleum-like odor, poorly graded, wet 6 SM End of boring 8 SILTY SAND, black, petroleum-like odor, poorly graded, wet	0 SW SAND, brown, well graded, roots from 0.0-0.5' bgs, some silt, gravel, damp 0.2 2 2660 1.1 0.4 2 2660 SM Saturation 4 SM SILTY SAND, black, petroleum-like odor, poorly graded, wet 189.4 6 SM End of boring 52.4

Date(s) Drilled 5/24/24	Logged By K. O'Rourke	Checked By A. Strohl	
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs	
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA	
Groundwater Level 1.5 feet bgs	Sampling Method(s) Grab Temporary Well NA		
Borehole Backfill	Location 2679966.88701 E, 219378.457882 N		

₀ Depth (feet) I	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION SAND, brown, damp, loose, roots from 0.0-0.5 bgs, gravel, some fines	8.0 PID Reading, ppm	REMARKS AND OTHE TESTS
2	24/60		SW		▼saturation SAND, black, sticky, tar-like, well graded, petroleum-like smell, wet	0.9 1310 2306 1332 2609 3970 228	Sample 136N-SB15-1.0-1.5 from 1.0-1.5' bgs
6—			ML		SILT, tan brown, modeling, hard, wet, low plasticity and dilatancy End of boring	200.1	
8-							
10 —							

Date(s) Drilled	5/24/24					Logged By K. O'Rourke		Checked By A. Strohl		
Drilling Method	Direct I	Push				Drill Bit Size/Type 2" x 5' macrocore		Total Depth of Borehole 5 feet bgs		
Drill Rig Type	7822 D	T Ge	oprobe			Drilling Contractor MB Drilling		Elevation NA		
Groundw	water Lev	el 2.5	5 feet bo	gs		Sampling Method(s) Grab		Temporary W	ell NA	
Borehole Backfill	^e Soil C	uttin	gs			Location 2679978.85674 E, 21938	5.116002 N			
o Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log		MATERIAL DESCRIPT			PID Reading, ppm	REMARKS AND OTHEF TESTS
			SW			orown, well graded, roots from 0.0-0 AND, black, damp, dense, poorly gr		ilt, gravel	2.6 3.1 4.9 3.7	
2	24/60		ML			ack petroleum-like odor soft wet k	w plasticity an	d dilatancy	31.6	Sample 136N-SB16-2.0-2.5 from 2.0-2.5' bgs

V:\Projects\P044 - PESRM\PES\Deliverables\Act2Closure\136NaphthaRelease\Field Notes\136N Soil Borings.bg4[no well shallow.tp]

SILT, black, petroleum-like odor, soft, wet, low plasticity and dilatancy 81.6 saturation and brick fragment 206.2 93.7 4 SAND, poorly graded, black, petroleum-like odor, loose, wet SP 41.7 11.5 End of boring 6-8-10

Date(s) Drilled 5/24/24	Logged By K. O'Rourke	Checked By A. Strohl	
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs	
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA	
Groundwater Level 2.0 feet bgs	Sampling Method(s) Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679986.1698 E, 219379.871465 N		

	Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
]	0 — 2 —	36/60		SW		SAND, higher silt content, gravel, brown, well graded, loose, damp, roots from 0.0-0.5' bgs	0.5 0.8 1.4 1.1 0.8	Sample 136N-SB17-1.5-2.0 from 1.5-2.0' bgs
V: Projects/P044 - PESRM/PES/Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]	4 —	50,00		ML		SILT, black, wet, soft, petroleum-like odor, low plasticity and dilatancy	0.7 0.6 0.7 101.5 5.5	
sNaphthaRelease\Field Notes\136N	6 —					End of boring		
PES\Deliverables\Act2Closure\136	8—							
V:\Projects\P044 - PESRM\	10							

Date(s) Drilled 5/24/24	Logged By K. O'Rourke	Checked By A. Strohl	
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs	
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA	
Groundwater Level 3.5 feet bgs	Sampling Method(s) Grab Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2679992.14633 E, 219379.936482 N		

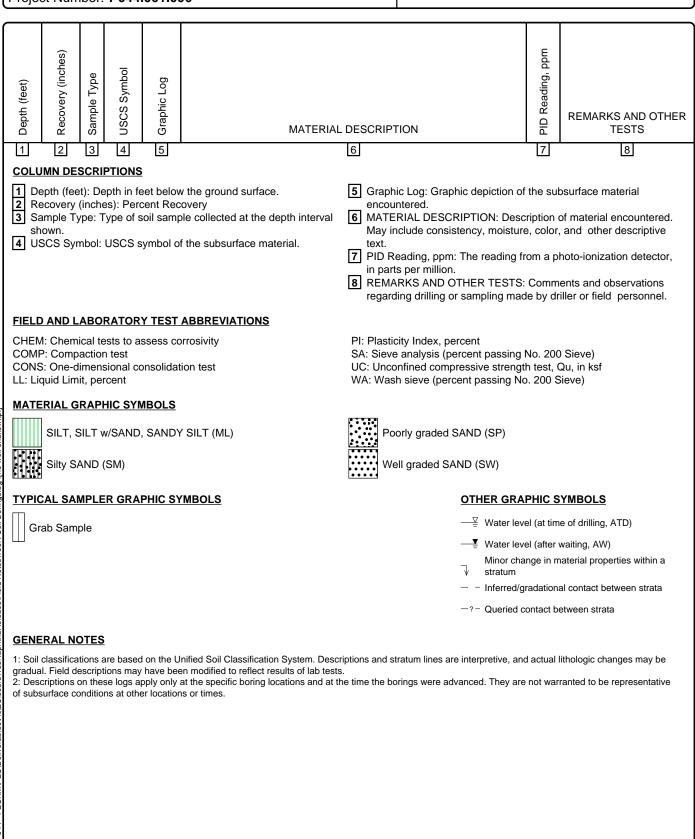
₀ Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
2-	28/60		SW		SAND, higher silt content, gravel, well graded, brown, loose, damp, roots from 0.0-0.5' bgs	0.4 0.5 1.0 1 0.9 0.7 1.0 0.6	Sample 136N-SB18-1.0-1.5 from 1.0-1.5' bgs
V:/Projects/P044 - PESRM/PES/Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings. bg4[no well shallow.tpl] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					End of boring	0.5	
M/PES/Deliverables/Act2Closure/ 8 1							
V:\Projects\P044 - PESRM							

Date(s) 5/24/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl		
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs		
Drill Rig Type 7822 DT Geoprobe	Drilling Contractor MB Drilling	Elevation NA		
Groundwater Level 3.0 feet bgs	Sampling Method(s) Grab	Temporary Well NA		
Borehole Backfill	Location 2680001.08515 E, 219383.824179 N			

Depth (feet)		Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
	0			SW		SAND, brown, well graded, loose, some silt, gravel, roots from 0.0-0.5' bgs, damp	0.1	
							0.4 0.4	
	2—				· · · · · · · · · · · · · · · · · · ·		0.9	
[Id]·M		20/60					0.7 1.1	Sample 136N-SB19-2.5-3.0 from
nursiadies my un procuedate men under lease men under la more la procuración de la procuración de la procuración La procuración de la p						↓ saturation	0.7	2.5-3.0' bgs
igs.bg4[II0	4 —						0.6	
							0.4	
IOC I \SAION						End of boring		
	6 —							
hilli areie								
SUCZUS	8 —							
Deliverable								
	o —							
- 144 - 16	-							
v.vriojecis	L						I	

V: Projects/P044 - PESRM/PES/Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]

Date(s) 5/24/24 Drilled	Logged By K. O'Rourke	Checked By A. Strohl	
Drilling Method Direct Push	Drill Bit Size/Type 2" x 5' macrocore	Total Depth of Borehole 5 feet bgs	
	Drilling Contractor MB Drilling	Elevation NA	
Groundwater Level 3.0 feet bgs	Sampling Method(s) Temporary Well NA		
Borehole Backfill Soil Cuttings	Location 2680009.11894 E, 219381.525779 N		


Depth (feet)	Recovery (inches)	Sample Type	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
2-	17/60		SW		SAND, brown, well graded, some silt, gravel, roots from 0.0-0.5', damp, very soft, low recovery	0 0 0 0 0	Sample
					<pre> saturation slight staining and petroleum-like odor </pre>	0 0 1.9 1.4	136N-SB20-2.5-3.0 from 2.5-3.0' bgs
4 6					End of boring		
10-							

V: Projects/P044 - PESRM/PES\Deliverables/Act2Closure/136NaphthaRelease/Field Notes/136N Soil Borings.bg4[no well shallow.tpl]

Project: Philadelphia Energy Soln. Refining and Mktg. LLC

Project Location: 3144 West Passyunk Avenue

Key to Log of Boring Sheet 1 of 1

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907529, -75.21362

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	nscs	Visual Classification	Sample Number
		1.2			Poorly graded gravel, light brown, dry, loose, few fines, angular 1/2" gravels, roots	
0.5 –		1.5				
1 -		1.3		gp		
1.5 –		1.3				
2 -		1.6			Silty sand, light brown, dry, loose, trace clay, trace 1/4" angular gravel and pulverized rock	
2.5 -	40/60	0.8				
3 -		11.7				
3.5 –		56.6		sm		
4 -		78.7			@4': increase density and moisture of silty sand	136N-SB15R-4.0-4.5
⊻ 4.5 -		84.1			@4.5': color change to black, wet silty sand, petroleum-like odor, sheen	
5			[이다. 이다. 이다. 이다. 이다. 이다. 이다. 이다. 이다. 이다.		End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907509, -75.213656

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
		0.3			Silty sand, brown, dry, loose	
0.5 –		1.8				
1 -		14.3				
1.5 -		34.8				136N-SB21-1.5-2.0
2 -		109.1				
2.5 -	50/60	23.8		sm		
3 -		62.1			@3': increase density, color change to dark brown	136N-SB21-3.0-3.5
3.5 -		30.8				
4 -		38.9			@4': color change to black, soft, wet silty sand, petroleum-like odor, sheen	
⊻ 4.5 -		80.1				
5						
					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907498, -75.213621

					Samples
Depth (ft) % Recovery	(Wdd) Old	Graphic Log	nscs	Visual Classification	Sample Number
0.5 - 1 -	1.8 2.6 5.6			Silty sand, brown, dry, soft, trace 1/2" angular gravel, roots	
1.5 - 2 -	110.3		sm		136N-SB22-1.5-2.0
2.5 - 55/6	691.9			@2.5': decrease gravel	
3.5 - 4 -	594.3 1165			Sand, black, dry, soft, medium coarse sand, brick debris, petroleum-like odor, sheen	- 136N-SB22-4.0-4.5
4.5 - 5	320.4		sp	End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907506, -75.21354

2 - 945.3 2.5 - 46/60 120.6 gp						Samples
0.5 - 466.8 Sm 1 - 301.1 Poorly graded gravel, dark brown, dry, soft, 1/2" gravels, brick debris, trace medium coarse sand 1.5 - 960.1 Poorly graded gravel, dark brown, dry, soft, 1/2" gravels, brick debris, trace 2 - 945.3 99 2.5 - 46/60 120.6 99	Depth (ft)	% Recovery PID (PPM)	PID (PPM) Graphic Log	NSCS	Visual Classification	Sample Number
Poorly graded gravel, dark brown, dry, soft, 1/2" gravels, brick debris, trace 136N-SB23- 1.5 - 960.1 2 - 945.3 2.5 - 46/60 120.6 9P	0.5 -	466.8	66.8	sm	Silty sand, brown, dry, soft, trace 1/4" rounded gravel	
2 - 945.3 2.5 - 46/60 120.6 gp					Poorly graded gravel, dark brown, dry, soft, 1/2" gravels, brick debris, trace medium coarse sand	-
						136N-SB23-1.5-2.0
3 - 128.5 @3': dry, soft, 6" pulverized brick lens 136N-SB23-	2.5 -	46/60 120.6	20.6	gp		
	3 -	128.5	28.5		@3': dry, soft, 6" pulverized brick lens	136N-SB23-3.0-3.5
3.5 - 71.8	3.5 -	71.8	71.8			
4 - 60.8 Sand, black, wet, loose, coarse sand, trace fines, micaceous, petroleum-like odor and sheen \$\sum_4.5 - 27.3 \$		- - 		sp	Sand, black, wet, loose, coarse sand, trace fines, micaceous, petroleum-like odor and sheen	
		21.3		~Y		
End boring at 5' bgs.					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907496, -75.213496

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
		47.7			Silty sand, dark brown, dry, stiff, trace 1/4" angular gravel	
0.5 -		215.9				
1 -		681.8			@1': decrease stiffness	136N-SB24-1.0-1.5
1.5 -		187.6				
2 -		246			@2': dry, soft, 6" pulverized brick lens	
2.5 -	55/60	224.6		sm		
3 -		91				
3.5 -		69.5				
4 -		234			@4': color change to dark brown, increase stiffness, increase moisture	136N-SB24-4.0-4.5 136N-SB24-4.0-4.5D
4.5 -		144				
5					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907504, -75.21345

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
		15.5			Silty sand, brown, dry, soft, 6" brick lens	
0.5 -		144.9				
1 -		228.2				136N-SB25-1.0-1.5
1.5 -		202.5		sm	@1.5': increase stiffness, color change to dark brown, increase moisture	
2 -		190.9				
2.5 -	44/60	424.8				
2.0		12110			Sand, black, dry, soft, medium coarse sand	
3 -		583.7				
3.5 -		324				
4 -		524.9		sp	@4': increase moisture, petroleum-like odor	136N-SB25-4.0-4.5
						136N-SB25-4.0-4.5D
⊻ 4.5 -		54.6				
5					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907563, -75.213627

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
		2.5			Poorly graded gravel, gray, dry, soft, 1/2" angular gravel	
0.5 -		5.4				136N-SB26-0.5-1.0 136N-SB26-0.5-1.0D
1 -		2.8		gp		
1.5 -		3				
2 -		3.6			Silty sand, dark brown, moist, stiff, trace 1/2" angular gravel, trace medium sand	
2.5 -	40/60	2.8				
3 -		2.2				
3.5 -		4.9		sm		
4 -		41.7				136N-SB26-4.0-4.5
<u>⊻</u> 4.5 -		34.8			@4.5': color change to black, wet, petroleum-like odor, sheen	
5			1819년 1919년 191		End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907465, -75.213623

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	nscs	Visual Classification	Sample Number
		6.6			Silty sand, light brown, dry, loose, trace 1/2" angular gravel, roots	
0.5 -		22.4				
1 -		799.8				
1.5 -		1164				136N-SB28-1.5-2.0
2 -		1459		sm		
2.5 -	55/60	1427				136N-SB28-2.5-3.0
3 -		404.6			@3': increase moisture, color change to dark brown	
3.5 -		473.9				
⊻ 4 -		219.1			Sand, black, wet silty sand, petroleum-like odor, sheen	-
4.5 -		261.7		sp		
5					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907502, -75.213577

					Samples
Depth (ft) % Recovery	(MPA) DIA	Graphic Log	NSCS	Visual Classification	Sample Number
0.5 - 1 -	3.9 26.7 391.3			Silty sand, light brown, dry, soft, brick debris, roots	136N-SB29-1.0-1.5
1.5 - 2 - 2.5 - 45/60	345.9 491.9 310.3		sm		
3 - 3.5 -	461.6 58.3			@3': color change to dark brown	136N-SB29-3.0-3.5
4 - 4.5 -	20.6		sp	Sand, dark brown, dry, soft, medium sand, petroleum-like odor, sheen	
5	[End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907466, -75.213577

						Samples
Depth (ft)	% Recovery	(MPA) DIA	Graphic Log	NSCS	Visual Classification	Sample Number
0.5 -		18.9 97.6			Poorly graded gravel, light brown, dry, soft, 1/2" angular gravel, brick debris, trace fines, roots	
1 -		409.1		gp		136N-SB30-1.0-1.5
1.5 -		310.1			@1.5': increase fines, color change to dark brown	
2 -		833.5			Sand, light brown, dry, soft, coarse sand, brick debris, pulverized rock	- 136N-SB30-2.0-2.5
2.5 - 3 -	49/60	759.2				
3.5 -		527.2		sp		
4 -		424.8				
4.5 -		119.8				
5					End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.90747, -75.213536

Image: Construction Image: Construction Image: Construction Image: Construction 0.5 1 128.1 11.4 Silly sand, dark brown, dry, soft, trace gravel 1 658.3 1 5 1.5 985.7 5 2 60100 374.5 3.5 628.8 4 228.9 2.5 60100 3.5 82.8 4.5 5 5.5 5 5.5 5 60100 374.5 1.5 5 2.5 60100 3.6 87.1 3.5 82.8 4.5 5 5.5 5 5.6 5 5.7 5 5.8 5 5.8 5 6.7 5 6.8 5 7.5 5 8.7 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5 8.8 5							Samples
0.5 228.1 sm sm 198N-SB31-1.0-1.5 1.5 585.7 Sp 138N-SB31-1.0-1.5 2.5 60/60 374.5 Silty sand, dark brown, damp, stiff, brick debris, sheen 138N-SB31-2.5-3.0 3.5 82.8 sm Sm 138N-SB31-2.5-3.0	Depth (ft)	% Recovery	(MAd) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
1.5 - 585.7 $2 - 404.8$ $2.5 - 60/60$ 374.5 $3 - 253.9$ $3.5 - 82.8$ $4 - 20.8$ $24.5 - 5$ $3and, black, wet coarse sand, petroleum-like odor, sheen$ $5and, black, wet coarse sand, petroleum-like odor, sheen$			228.1		sm	Silty sand, dark brown, dry, soft, trace gravel	
$2.5 - \frac{60}{60}$ 374.5 $3 - \frac{253.9}{4}$ $3.5 - \frac{82.8}{4}$ $\boxed{4} - \frac{20.8}{5}$ $\boxed{4} - \frac{20.8}{5}$ $\boxed{5}$ $Sand, black, wet coarse sand, petroleum-like odor, sheen$ $\boxed{4} - \frac{5}{5}$	1.5 –		585.7		sp	Sand, dark brown, damp, soft, medium coarse sand	136N-SB31-1.0-1.5
$3.5 - 82.8$ $4 - 20.8$ $\boxed{4 - 20.8}$ $\boxed{4 - 20.8}$ $\boxed{5 - 82.8}$ $5 $		60/60				Silty sand, dark brown, damp, stiff, brick debris, sheen	136N-SB31-2.5-3.0
Sand, black, wet coarse sand, petroleum-like odor, sneen					sm		
5 End boring at 5' bgs.			20.8		sp	Sand, black, wet coarse sand, petroleum-like odor, sheen	
	5	[End boring at 5' bgs.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.90747, -75.213491

						Samples
Depth (ft)	% Recovery	(MAA) OIA	Graphic Log	NSCS	Visual Classification	Sample Number
		10.5			Sand, black, damp, soft, medium coarse sand, trace gravel	
0.5 –		832.6				136N-SB32-0.5-1.0
1 -		354.4		sp		
1.5 -		153.8				
2 -		52.8			Silty sand, dark brown, damp, stiff, trace brick debris	
2.5 -	55/60	53.3			@2.5': 6" pulverized brick lens	136N-SB32-2.5-3.0
3 -		20.8				
3.5 -		15		sm	@3.5': 6" coarse brown sand lens	
4 -		10.8				
4.5 -		9.7				
5					End boring at 5' bgs.	
					Lina bolility at 5 bys.	

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024	
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC	
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT	
Method: Direct Push	Boring Diameter: 2 in	
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer	
Checked By: DRAFT	Depth: 5'	
Surface Elevation: N/A	Coordinates: 39.907507, -75.213736	

						Samples
Depth (ft)	% Recovery	(MPA) DIA	Graphic Log	nscs	Visual Classification	Sample Number
0.5 -		6.2 3.5 6.6		sm	Silty sand, light brown, dry, loose, trace 1/2" angular gravel, brick debris	
1.5 -		14.2				136N-SB35-1.5-2.0
2 - 2.5 -	45/60	73.6 239.8			Sand, black, damp, loose, medium coarse, brick debris	
3 -		481.8				136N-SB35-3.0-3.5
3.5 -		361.2		sp		
4 - <u>-</u> <u>-</u> <u>4.5</u> -		137.1 73.1			@4': increase pulverized brick debris, petroleum-like odor, sheen	
5					End boring at 5' bgs.	
L						

Soil Boring: AOI7-BH-08-2019R

Terraphase Engineering

Project: 136 Naphtha - PESRM Location: 3144 W Passyunk Ave, Philadelphia, PA

Date Started: 10/28/2024	Date Completed: 10/28/2024
Client Name: Bellwether District Holdings, LLC	Drilling Firm: MB Drilling LLC
Driller: Joseph Flannery, Keith Butcher	Rig Type: Geoprobe 7822DT
Method: Direct Push	Boring Diameter: 2 in
Tooling: 5' x 2" Macrocore	Logged By: Marissa Mowrer
Checked By: DRAFT	Depth: 5'
Surface Elevation: N/A	Coordinates: 39.907505, -75.213499

Open of the open open open open open open open ope							Samples
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth (ft)	% Recovery	(MPG) DIG	Graphic Log	nscs	Visual Classification	Sample Number
1 - 222 $2 - 36.1$ $2 - 36.1$ $3 - 24.6$			2.1			Poorly graded gravel, light brown, dry, loose, rounded 1/2" gravels	
Silly sand, brown, damp, trace day with pulvenzed block and gravels 1.5 - 21.3 2 - 36.1 2.5 - 55/60 128.2 3 - 24.6 sm 3.5 - 13.8 $\boxed{2} 4 - 10.8$ 4.5 - 1 6 4': color change to black, wet silty sand, petroleum-like odor, sheen 6 4': color change to black, wet silty sand, petroleum-like odor, sheen	0.5 -		101.4		gp		
2 - 36.1 $2.5 - 55/60$ 128.2 $3 - 24.6$ $3.5 - 13.8$ $2 - 4 - 10.8$ $(24): color change to black, wet silty sand, petroleum-like odor, sheen$ $4.5 - 10.8$ $(24): color change to black, wet silty sand, petroleum-like odor, sheen$	1 -		222			Silty sand, brown, damp, trace clay with pulverized brick and gravels	_
2.5 - 55/60 128.2 $3 - 24.6 sm$ $3.5 - 13.8 @4': color change to black, wet silty sand, petroleum-like odor, sheen$ $4.5 - 10.8 @4': color change to black, wet silty sand, petroleum-like odor, sheen$	1.5 -		21.3				
3 - 24.6 $3.5 - 13.8$ $24 - 10.8$ $4.5 - 4.5$	2 -		36.1				AOI7-BH-08-2019R-2.0 -2.5
3.5 - 13.8 $24 - 10.8$ $4.5 - 4.5 - 5$ $(a.5 - 5.5)$ $($	2.5 -	55/60	128.2				
Image: 10.8 10.8 Image: 4 - 10.8 <td< td=""><td>3 -</td><td></td><td>24.6</td><td></td><td>sm</td><td></td><td></td></td<>	3 -		24.6		sm		
4.5 -	3.5 -		13.8				
	⊻ 4 -		10.8			@4': color change to black, wet silty sand, petroleum-like odor, sheen	
5 End boring at 5' bas	4.5 -						
	5					End boring at 5' bac	
						Lina boning at 5 bys.	

Appendix G

75%/10x Rule Calculations

					Conc		Limit	Exposure Conc	PADEP Non-Res Used Aquifer (TDS ≤ 2500) Soil-to-GW	Exceeds	Exceeds 10x
Location	Sample Name	Sample Date	Chemical	CASRN	(mg/kg)	Qual	(mg/kg)	(mg/kg)	(mg/kg)	Criteria	Criteria
136N-SB01	136N-SB01-1.0-1.5	5/23/2024	Benzene	71-43-2		U	0.00066	0.00066	0.5	No	No
136N-SB01	136N-SB01-1.0-1.5D	5/23/2024	Benzene	71-43-2		U	0.00069	0.00069	0.5	No	No
136N-SB02	136N-SB02-3.0-3.5	5/23/2024	Benzene	71-43-2		U	0.028	0.028	0.5	No	No
136N-SB03	136N-SB03-3.0-3.5	5/23/2024	Benzene	71-43-2	0.0032		0.00042	0.0032	0.5	No	No
136N-SB04	136N-SB04-3.5-4.0	5/23/2024	Benzene	71-43-2		U	0.00041	0.00041	0.5	No	No
136N-SB05	136N-SB05-2.0-2.5	5/23/2024	Benzene	71-43-2		U	0.0005	0.0005	0.5	No	No
136N-SB06	136N-SB06-2.0-2.5	5/23/2024	Benzene	71-43-2	0.008		0.00047	0.008	0.5	No	No
136N-SB07	136N-SB07-2.5-3.0	5/23/2024	Benzene	71-43-2	0.75		0.03	0.75	0.5	Yes	No
136N-SB08	136N-SB08-2.0-2.5	5/23/2024	Benzene	71-43-2		U	0.00051	0.00051	0.5	No	No
136N-SB09	136N-SB09-3.0-3.5	5/23/2024	Benzene	71-43-2	0.0029		0.0005	0.0029	0.5	No	No
136N-SB10	136N-SB10-2.0-2.5	5/23/2024	Benzene	71-43-2		U	0.00049	0.00049	0.5	No	No
136N-SB11	136N-SB11-2.0-2.5	5/24/2024	Benzene	71-43-2	0.00045	J	0.0005	0.00045	0.5	No	No
136N-SB12	136N-SB12-3.0-3.5	5/24/2024	Benzene	71-43-2	0.00093		0.0006	0.00093	0.5	No	No
136N-SB13	136N-SB13-1.0-1.5	5/24/2024	Benzene	71-43-2	0.00034	J	0.00052	0.00034	0.5	No	No
136N-SB14	136N-SB14-2.5-3.0	5/23/2024	Benzene	71-43-2	0.018		0.00046	0.018	0.5	No	No
136N-SB16	136N-SB16-2.0-2.5	5/24/2024	Benzene	71-43-2	0.0028		0.00056	0.0028	0.5	No	No
136N-SB17	136N-SB17-1.5-2.0	5/24/2024	Benzene	71-43-2	0.00042	J	0.00049	0.00042	0.5	No	No
136N-SB18	136N-SB18-1.0-1.5	5/24/2024	Benzene	71-43-2	0.00024	J	0.0005	0.00024	0.5	No	No
136N-SB19	136N-SB19-2.5-3.0	5/23/2024	Benzene	71-43-2		U	0.00048	0.00048	0.5	No	No
136N-SB20	136N-SB20-2.5-3.0	5/23/2024	Benzene	71-43-2	0.00046		0.00046	0.00046	0.5	No	No

Percentage of Non-Exceeding Locations	95%
Number of Locations Exceeding 10x Criteria	0

Appendix H

Response to Comments

Response to PADEP Comments on the Combined Remedial Investigation and Final Act 2 Report – 2019 Light Naphtha Release Area

Former Philadelphia Energy Solutions Refinery, 3144 West Passyunk Ave, Philadelphia, PA

The following provides responses to the Pennsylvania Department of Environmental Protection's (PADEP) comments received on August 26, 2021, upon their review of the *Combined Remedial Investigation and Final Report* (2021 RI/Final Report) for the 2019 Light Naphtha Release Area. The 2021 RI/Final Report was submitted to PADEP by Langan Engineering and Environmental Services, Inc. (Langan) on June 29, 2021. Terraphase has prepared a *Remedial Investigation and Final Report for the 136 Naphtha Release Area (Girard Point)* (RI/Final Report) to address the deficiencies noted by PADEP. The responses below were prepared by Terraphase Engineering Inc. (Terraphase) on behalf of Bellwether District Holdings, LLC (BDH).

Comment 1: The release location is not clearly identified as required by 25 Pa. Code Section 250.204(b) and (d), as referenced by 25 Pa. Code Section 250.312(a). The text of the Final Report indicates there were two release locations along the product line, however the Philadelphia Energy Solutions Investigation Report indicates "there are a total of 3 blown out portions of the line within 20 feet of each other in the old 6 Still lot and four other blown out gaskets on flanges throughout the line." Clarification to the release location relative to the area investigated is needed.

Response 1: Section 2.1 of the RI/Final Report prepared by Terraphase, on behalf of BDH, clarifies the location(s) of the release.

Comment 2: Soil characterization is incomplete as exceedances of benzene and toluene were present in four locations in proximity to the release and the closest 2010 and 2012 historical samples to the 2019 Naphtha release samples were below Statewide health standard medium specific concentrations. This contradicts the suggestion that the exceedances in this area are a result of historical activities. Complete soil delineation is required by 25 Pa. Code Section 250.204(b) and (d), as referenced by 25 Pa. Code Section 250.312(a).

Response 2: BDH completed additional soil attainment and soil characterization sampling in May and October 2024, respectively, and analyzed for benzene and toluene. Section 3 of the RI/Final Report prepared by Terraphase describes the results of the sampling and discusses the nature and extent of soil contamination. Based on the identification of multiple buried drums, LNAPL seepage, and soil contamination consistent with the surrounding area, as discussed in Section 2 of the RI/Final Report, Pre-Existing Contamination is diffuse throughout the area in and around the Site. BDH's May and October 2024 attainment soil sampling demonstrates that all contamination associated with the February 2019 release has been removed and any remaining (Pre-Existing) contamination in the area is associated with unrelated release(s) that Evergreen will manage as part of the 2012 Buyer-Seller Agreement and the 2020 First Amendment to that Agreement. **Comment 3:** All environmental media impacted by the release were not addressed as required by 25 Pa. Code Section 250.204(b), as referenced by 25 Pa. Code Section 250.312(a). The Final Report states that "soil and groundwater conditions outside of the naphtha discharge area are being addressed by Evergreen." If groundwater is not being addressed by Hilco, then documentation of Evergreen's agreement to address this release's impact on groundwater is required.

Response 3: As presented in **Attachments A** and **B**, groundwater samples were collected from wells located in the vicinity and downgradient of the release area (i.e., C-61, C-105, C-175, and C-176). Table 1 provides groundwater analytical results for the target analytes for the naphtha release area (i.e., PADEP Petroleum Short List for unleaded gasoline (Table III-5 of the *Land Recycling Program Technical Guidance Manual* [PADEP 2021a]) that were collected post-release (i.e., after February 22, 2019). Since none of the target analytes were detected at concentrations above the applicable Medium Specific Concentrations (MSCs), there is no evidence of impact to groundwater as a result of the release. Analytical results are presented in **Attachment A** and the location of the monitoring wells are shown on **Attachment B**. Section 2.6 of the RI/Final Report also includes discussion on the investigation of groundwater in the area of the release.

<u>Comment 4</u>: Documentation regarding remedial activities was not included as required by 25 Pa. Code Section 250.204(f)(1), as referenced by 25 Pa. Code Section 250.312(c). Documentation for the liquid recovery via vacuum trucks and treatment, locations of the test pits where recovery took place, and supporting documentation regarding the extent of the release supporting the basis that characterization and remedial efforts were guided by visual observation were all not included in the Final Report.

Response 4: The liquids recovered via vacuum truck were moved to and stored within aboveground storage tank GP 272, a three-million-gallon waste oil tank within the former Girard Point Refinery (Langan 2021). The waste was eventually treated via the on-Facility wastewater treatment system. Details regarding the liquid recovery that was conducted in response to the release are also provided in Section 2.1 of the RI/Final Report.

During response activities, test pits were installed along the compromised product line from which the light naphtha product was released, and the observed water/product mixture was removed. Documentation was not provided that illustrated their exact locations. Text on the remediation response and test pits are included in Section 2.1 of the RI/Final Report.

Supporting documentation of the field observations from the March 2019 soil sampling, including observations of dark staining, hydrocarbon odor, and the presence of sheen, used to determine the extent of remedial action is provided in Table 6 of Stantec's November 13, 2020 *Unit 137 Release in the Area of Former 136 Unit: Investigation Summary*.

<u>Comment 5:</u> Documentation for the systematic random soil sampling grid design was not included in the report as required by 25 Pa. Code Section 250.703, as referenced by 25 Pa. Code 250.312(d).

<u>**Response 5:**</u> Post-excavation sampling was initially conducted by Stantec, on behalf of PES, on December 12, 2019 and, as noted, documentation for the systematic random soil sampling grid design was not included in the 2021 RI/Final Report prepared by Langan. Terraphase, on behalf

of BDH, collected "post-excavation" attainment soil samples within the footprint of the prior excavation in May 2024 at locations determined using PADEP's Systematic Random Sampling Workbook (see Section 3 of the RI/Final Report prepared by Terraphase). Documentation of the systematic random soil sampling grid design is provided in Appendix F of the RI/Final Report.

<u>Comment 6</u>: The ecological assessment documentation related to the habitats of concern provided in Appendix F to the report was not consistent with the statements provided in the text of the report and should be revised for the subsequent submittal.

Response 6: Section 6.2 of the RI/Final Report prepared by Terraphase describes the ecological screening evaluation that was conducted in accordance with Section II.B.5 of the *Land Recycling Program Technical Guidance Manual* (PADEP 2021). Following the regulatory framework for conducting an ecological screening evaluation under the Statewide Health Standard (SHS), the screening determined no further ecological evaluated is required.

<u>Comment 7</u>: Post-excavation soil samples were collected at depths ranging from 2 to 4.5 feet below grade and documentation in the report suggest these samples were collected at saturated soil depths; therefore, the data should be compared to the saturated soil-to-groundwater numeric values.

Response 7: Comment noted. Terraphase, on behalf of BDH, collected "post-excavation" attainment soil samples within the footprint of the prior excavation in May 2024 at locations determined using PADEP's Systematic Random Sampling Workbook (see Section 3 of the RI/Final Report prepared by Terraphase and Response #5). These samples were collected from unsaturated soil and compared against the appropriate applicable MSCs.

<u>Comment 8:</u> The depth of the excavation was not stated in the report.

Response 8: Section 7 of the 2021 RI/Final Report prepared by Langan states that excavation depth extended to just above the water table, which was between 2 and 6 ft bgs. For the purposes of the "post-excavation" attainment soil sampling, Terraphase conservatively assumed that the excavation area was uniformly advanced to a depth of 6 ft bgs, as described in Section 3 of the RI/Final Report.

References

- Langan Engineering and Environmental Services, Inc. (Langan). 2021. Combined Remedial Investigation/Final Act 2 Report. June 14.
- Pennsylvania Department of Environmental Protection (PADEP). 2021a. Land Recycling Program Technical Guidance Manual. March 27.
- Stantec. 2020. Unit 137 Line Release in the Area of Former 136 Unit: Investigation Summary. November 13.

<u>Attachments</u>

- Attachment A Post-Release Groundwater Analytical Results
- Attachment B Monitoring Well Locations Figure

Attachment A

Post-Release Groundwater Analytical Results

Table 1Post-Release Groundwater Analytical Results136 Naphtha Release AreaBellwether District Holdings, LLC, Philadelphia, PA

Location Field Sample ID	Non-Residential Groundwater MSC	C-105 C-105-20220118_30460070	C-105 C-105_20220429	C-105 C-105_20220628	C-105 C-105_20230509	C-105 C-105_20240422 C-	C-175 175-20220118_30460070	C-175 C-175_20220413	C-175 C-175_20220628
Sample Date	Used Aquifer	1/18/2022	4/29/2022	6/28/2022	5/9/2023	4/22/2024	1/18/2022	4/13/2022	6/28/2022
Comments	(TDS ≤ 2500)								
Volatile Organic Compounds									
Benzene	0.005	ND (0.001)	ND (0.0005)	NA	ND (0.0005)	ND (0.0005)	0.00078 J (0.001)	0.0013 (0.0005)	NA
Cumene	3.5	ND (0.001)	ND (0.001)	NA	0.0016 (0.001)	ND (0.001)	0.0034 (0.001)	0.0097 (0.001)	NA
Ethyl Benzene	0.7	ND (0.001)	ND (0.001)	NA	ND (0.001)	ND (0.001)	0.00059 J (0.001)	0.0011 (0.001)	NA
Methyl tert-butyl ether	0.02	ND (0.001)	ND (0.001)	NA	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	NA
Toluene	1	ND (0.001)	ND (0.001)	NA	ND (0.001)	ND (0.001)	0.00061 J (0.001)	ND (0.001)	NA
1,2,4-Trimethylbenzene	0.53	ND (0.001)	ND (0.002)	NA	ND (0.002)	ND (0.002)	0.0025 (0.001)	0.0042 (0.002)	NA
1,3,5-Trimethylbenzene	0.53	ND (0.001)	ND (0.002)	NA	ND (0.002)	ND (0.002)	0.00083 J (0.001)	0.0014 J (0.002)	NA
Xylenes (total)	10	ND (0.003)	ND (0.001)	NA	ND (0.001)	ND (0.001)	0.004 (0.003)	0.0052 (0.001)	NA
Semivolatile Organic Compounds									
Naphthalene	0.1	ND (0.00099)	ND (0.000087)	ND (0.00008)	ND (0.000083)	0.0000419 J (0.00008)	0.00092 J (0.001)	0.00049 (0.000087)	0.00149 (0.00008)

Notes:

1 All concentrations reported in mg/L (ppm); detection limits in parentheses.

2 Only PADEP's Shortlist for Unleaded Gasoline Parameters are shown.

3 No concentrations exceed the Non-Residential Groundwater MSC Used Aquifer (TDS ≤ 2500).

Abbreviations:

ND - Not Detected

NA - Not Analyzed

J - Estimated Concentration

Table 1Post-Release Groundwater Analytical Results136 Naphtha Release AreaBellwether District Holdings, LLC, Philadelphia, PA

Location	Non-Residential	C-176	C-176	C-176	C-176	C-61	C-61	C-61
Field Sample ID	Groundwater MSC	C-176-20220118_30460070	C-176_20220413	C-176_20220627	C-176_20240422	C-61-20220118_30460070	C-61_20220413	C-61_20220628
Sample Date	Used Aquifer	1/18/2022	4/13/2022	6/27/2022	4/22/2024	1/18/2022	4/13/2022	6/28/2022
Comments	(TDS ≤ 2500)							
Volatile Organic Compounds								
Benzene	0.005	ND (0.001)	0.00055 (0.0005)	NA	ND (0.0005)	ND (0.001)	ND (0.0005)	NA
Cumene	3.5	0.0014 (0.001)	0.0045 (0.001)	NA	0.0046 (0.001)	0.00067 J (0.001)	ND (0.001)	NA
Ethyl Benzene	0.7	ND (0.001)	ND (0.001)	NA	ND (0.001)	ND (0.001)	ND (0.001)	NA
Methyl tert-butyl ether	0.02	0.00025 J (0.001)	ND (0.001)	NA	ND (0.001)	0.0027 (0.001)	0.0025 (0.001)	NA
Toluene	1	ND (0.001)	ND (0.001)	NA	ND (0.001)	ND (0.001)	ND (0.001)	NA
1,2,4-Trimethylbenzene	0.53	0.0012 (0.001)	ND (0.002)	NA	ND (0.002)	ND (0.001)	ND (0.002)	NA
1,3,5-Trimethylbenzene	0.53	ND (0.001)	ND (0.002)	NA	ND (0.002)	ND (0.001)	ND (0.002)	NA
Xylenes (total)	10	0.002 J (0.003)	0.0023 (0.001)	NA	0.0014 (0.001)	ND (0.003)	ND (0.001)	NA
Semivolatile Organic Compounds								
Naphthalene	0.1	0.0022 (0.00098)	0.00074 (0.000087)	0.000548 (0.000074)	0.000111 (0.00008)	ND (0.00098)	ND (0.00008)	ND (0.00008)

Notes:

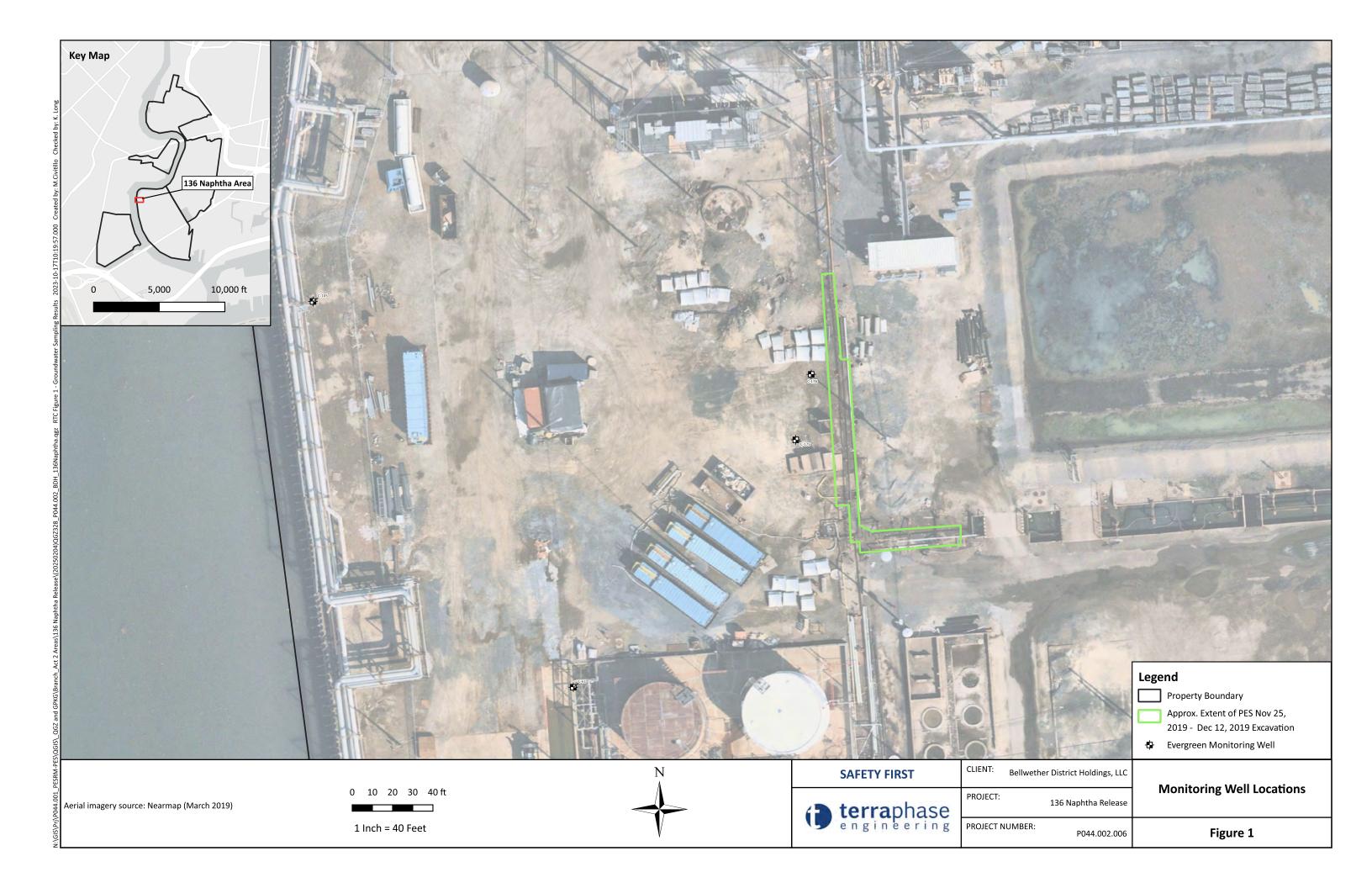
1 All concentrations reported in mg/L (ppm); detection limits in parentheses.

2 Only PADEP's Shortlist for Unleaded Gasoline Parameters are shown.

3 No concentrations exceed the Non-Residential Groundwater MSC Used Aquifer (TDS ≤ 2500).

Abbreviations:

ND - Not Detected


NA - Not Analyzed

J - Estimated Concentration

Attachment B

Monitoring Well Locations Figure

